1
|
Yamaguchi A. Protein diffusion inside nanopores. ANAL SCI 2025; 41:93-94. [PMID: 39838197 DOI: 10.1007/s44211-024-00701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Affiliation(s)
- Akira Yamaguchi
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, 310-8512, Japan.
| |
Collapse
|
2
|
Creyer MN, Retout M, Jin Z, Yim W, Jokerst JV. Ligation of Gold Nanoparticles with Self-Assembling, Coiled-Coil Peptides. J Phys Chem B 2023; 127:8009-8018. [PMID: 37683185 DOI: 10.1021/acs.jpcb.3c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The surface of gold nanoparticles (AuNPs) can be conjugated with a wide range of highly functional biomolecules. A common pitfall when utilizing AuNPs is their tendency to aggregate, especially when their surface is functionalized with ligands of low molecular weight (no steric repulsion) or ligands of neutral charge (no electrostatic repulsion). For biomedical applications, AuNPs that are colloidally stable are desirable because they have a high surface area and thus reactivity, resist sedimentation, and exhibit uniform optical properties. Here, we engineer the surface of AuNPs so that they remain stable when decorated with coiled-coil (CC) peptides while preserving the native polypeptide properties. We achieve this by using a neutral, mixed ligand layer composed of lipoic acid poly(ethylene glycol) and lipoic acid poly(ethylene glycol) maleimide to attach the CCs. Tuning the surface fraction of each component within the mixed ligand layer also allowed us to control the degree of AuNP labeling with CCs. We demonstrate the dynamic surface properties of these CC-AuNPs by performing a place-exchange reaction and their utility by designing an energy-transfer-based caspase-3 sensor. Overall, this study optimizes the surface chemistry of AuNPs to quantitatively present functional biomolecules while maintaining colloid stability.
Collapse
Affiliation(s)
- Matthew N Creyer
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Maurice Retout
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhicheng Jin
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Pramanik B, Islam MM, Patra HK. Rational design of peptide-based implants for corneal bioengineering. Curr Opin Biotechnol 2023; 81:102947. [PMID: 37163824 DOI: 10.1016/j.copbio.2023.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Regeneration of damaged cornea can save vision for millions of patients. Most of these patients are waiting for transplantation of a donor cornea or suitable substitute to restore vision. Although donor cornea transplantation is the most clinically accepted treatment, shortage of donor cornea results in almost 69 out of every 70 patients untreated with the waiting list for transplantation drastically increasing every year according to a prepandemic estimation. Therefore, corneal replacements are coming up as a cutting-edge alternative strategy. In view of the peptides, especially collagen-like peptides and peptide amphiphiles with bioactive functional motifs demonstrate promising avenue for the corneal tissue engineering and promoting regeneration, by their hierarchical self-assembling propensity to acquire desired nano- to macroscale 3D architecture. Here, we analyze rational peptide designing, self-assembly, and strategies of peptide/peptide-based nanoscale building blocks to create the extracellular matrix mimetic implants for functional regeneration of the cornea.
Collapse
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel; School of Pharmacy, University of Nottingham, NG7 2RD Nottingham, United Kingdom
| | - Mohammad M Islam
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Hirak K Patra
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, NW3 2PF, United Kingdom.
| |
Collapse
|
4
|
Mojtabavi M, Greive SJ, Antson AA, Wanunu M. High-Voltage Biomolecular Sensing Using a Bacteriophage Portal Protein Covalently Immobilized within a Solid-State Nanopore. J Am Chem Soc 2022; 144:22540-22548. [PMID: 36455212 DOI: 10.1021/jacs.2c08514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The application of nanopores as label-free, single-molecule biosensors for electrical or optical probing of structural features in biomolecules has been widely explored. While biological nanopores (membrane proteins and bacteriophage portal proteins) and solid-state nanopores (thin films and two-dimensional materials) have been extensively employed, the third class of nanopores known as hybrid nanopores, where an artificial membrane substitutes the organic support membrane of proteins, has been only sparsely studied due to challenges in implementation. G20c portal protein contains a natural DNA pore that is used by viruses for filling their capsid with viral genomic DNA. We have previously developed a lipid-free hybrid nanopore by "corking" the G20c portal protein into a SiNx nanopore. Herein, we demonstrate that through chemical functionalization of the synthetic nanopore, covalent linkage between the solid-state pore and the G20c portal protein considerably improves the hybrid pore stability, lifetime, and voltage resilience. Moreover, we demonstrate electric-field-driven and motor protein-mediated transport of DNA molecules through this hybrid nanopore. Our integrated protein/solid-state device can serve as a robust and durable framework for sensing and sequencing at high voltages, potentially providing higher resolution, higher signal-to-noise ratio, and higher throughput compared to the more conventional membrane-embedded protein platforms.
Collapse
Affiliation(s)
- Mehrnaz Mojtabavi
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sandra J Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Zhang D, Wang C, Wu C, Zhang X. Confining Fluorescent Probes in Nanochannels to Construct Reusable Nanosensors for Ion Current and Fluorescence Dual Gating. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1468. [PMID: 35564177 PMCID: PMC9101493 DOI: 10.3390/nano12091468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023]
Abstract
Here, we confined fluorescent probes to solid nanochannels to construct nanosensors, which not only significantly improved the reusability of the molecular probes, but also achieved ion current and fluorescence dual gating for more reliable detection. The combination of optical and electrical modalities can provide comprehensive spatiotemporal information that can be used to elucidate the sensing mechanism within the nanochannel. As a proof-of-concept experiment, fluorescein isothiocyanate (FITC)−hydrazine (N2H4) was selected to modify nanochannels for the effective detection of Hg2+. Based on spirolactam opening tactics, the system synergistically alters the surface charge and fluorescence intensity in response to Hg2+, establishing a dual open state of current and fluorescence. The newly prepared nanosensor exhibited a fast response (<1 min), high sensitivity, and selectivity towards Hg2+. Importantly, the nanodevice could be recovered by simple N2H4 treatment. Such sensing behavior could be used to implement optoelectronic dual-output XOR logical gates under the management of Hg2+ and N2H4. This strategy is anticipated to find broad applications in other nanochannel-based systems for various sensing applications used for monitoring of pollutants, food additives, and biomolecules.
Collapse
Affiliation(s)
- Dan Zhang
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau 999078, China; (D.Z.); (C.W.)
| | - Chunfei Wang
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau 999078, China; (D.Z.); (C.W.)
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Xuanjun Zhang
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau 999078, China; (D.Z.); (C.W.)
| |
Collapse
|