1
|
Xu T, Zhang X, Wang Z, Ng PW, Jiao L, Wang SQ, Khoo KH, Xu Z, Wu J, Zhu J. Modulating the Cavity Size of Carbon Nanobelts for Enhanced Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20096-20104. [PMID: 40123488 DOI: 10.1021/acsami.4c23016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The preactivation of reactants within the cavities of carbon nanotubular materials has remained largely unexplored due to the scarcity of materials with well-defined sizes and precisely engineered doping sites. Herein, we demonstrate that the catalytic activity toward the oxygen reduction reaction (ORR) is primarily governed by the cavity sizes of well-defined nanobelt materials with precisely doped sp2-nitrogen atoms. Our results show that the confinement effect induced by cavity size and the electron-rich chemical environment within the cavity are crucial for O2 adsorption and preactivation, leading to enhanced catalytic activity. Belt2, with its medium-sized cavity (6.3 Å), exhibits superior ORR catalytic performance compared to Belt1 with its narrower cavity and Belt3/Belt4 with its larger cavities. Notably, Belt2 achieves high half-wave and onset potentials of 0.84 and 0.97 V, respectively, along with an open-circuit voltage of 1.32 V and a peak power density of 181 mW cm-2 in a zinc-air battery. This work not only provides a deeper understanding of the geometric factors influencing the ORR electrocatalysis of nanocarbon materials but also offers insights into the future design of nanocarbon electrocatalysts for enhancing catalytic efficiency. These findings may also be beneficial for other energy conversion and catalytic materials.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xiaofei Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zao Wang
- State Key Laboratory of Transient Chemical Effects and Control, Shannxi Applied Physics-Chemistry Research Institute, Xi'an 710061, Shannxi, China
| | - Pei Wen Ng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Liuying Jiao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shi-Qiang Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Khoong Hong Khoo
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jun Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
2
|
Singh Y, Schuldt MP, Rominger F, Mastalerz M. High-Yielding Nanobelt Formation by Chirality-Assisted Synthesis. Angew Chem Int Ed Engl 2025; 64:e202414059. [PMID: 39401168 DOI: 10.1002/anie.202414059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 11/17/2024]
Abstract
Shape-persistent conjugated nanobelts (CNBs) are fascinating synthetic targets. However, in most cases these are made in low overall yields by applying strategies of macrocyclization followed by (multiple) ring fusion reactions for nanobelt formation. Here, we describe the high yielding synthesis of enantiopure chiral nanobelts in 84 % yield by applying chirality-assisted synthesis (CAS). The chiral nanobelts were investigated by UV/Vis and CD spectroscopy. By DFT calculations the aromaticity of these structures is discussed.
Collapse
Affiliation(s)
- Yogendra Singh
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Moritz P Schuldt
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Jiang Z, Kuninobu Y. Synthesis of a novel twisted π-conjugated macrocycle via double Friedel-Crafts reaction and its physical properties. Chem Commun (Camb) 2024; 60:7642-7645. [PMID: 38963239 DOI: 10.1039/d4cc00890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
We synthesized a cyclic molecule from diarylalkynes and Meldrum's acid derivatives as the methylenation reagent via double Friedel-Crafts reaction. Single-crystal X-ray structure analysis confirmed the twisted structure of the molecule. We also investigated their physical properties and homoconjugation by UV-Vis, photoluminescence, DFT and TD-DFT calculations.
Collapse
Affiliation(s)
- Zhiyan Jiang
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-Shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-Shi, Fukuoka 816-8580, Japan.
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-Shi, Fukuoka 816-8580, Japan
| |
Collapse
|
4
|
Artigas A, Carissan Y, Hagebaum-Reignier D, Bock H, Durola F, Coquerel Y. Aromaticity in Semi-Condensed Figure-Eight Molecules. Chemistry 2024; 30:e202401016. [PMID: 38642001 DOI: 10.1002/chem.202401016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/22/2024]
Abstract
Electron delocalization and aromaticity was comparatively evaluated in recently synthesized figure-eight molecules made of two condensed U-shaped polycyclic aromatic hydrocarbon moieties connected either by two single bonds or by two para-phenylene groups. The selected examples include molecules that incorporate eight-membered and sixteen-membered rings, as well as a doubly [5]helicene-bridged (1,4)cyclophane. We probe whether some electron delocalization could occur through the stereogenic single bonds in these molecules: Is aromaticity purely (semi-)local, or possibly also global in these molecules? It was concluded that the situation can go from a purely (semi-)local character when the dihedral angle at the connecting single bonds is large, such as in biphenyl, to a predominantly (semi-)local character with a minor global contribution when the dihedral angle is small, such as in the para-phenylene connectors of the [5] helicene-bridged cyclophane.
Collapse
Affiliation(s)
- Albert Artigas
- Facultat de Ciències, Universitat de Girona, Campus Montilivi, Carrer de Maria Aurèlia Capmany i Farnès 69, 17003, Girona, Catalunya, Spain
| | - Yannick Carissan
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | | | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS, 115 av. Schweitzer, 33600, Pessac, France
| | - Fabien Durola
- Centre de Recherche Paul Pascal, CNRS, 115 av. Schweitzer, 33600, Pessac, France
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| |
Collapse
|
5
|
Dong S, Han Y, Tong Z, Wang J, Zhang Y, Li A, Gopalakrishna TY, Tian H, Chi C. Facile synthesis and characterization of aza-bridged all-benzenoid quinoidal figure-eight and cage molecules. Chem Sci 2024; 15:9087-9095. [PMID: 38903229 PMCID: PMC11186326 DOI: 10.1039/d3sc02707d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/27/2024] [Indexed: 06/22/2024] Open
Abstract
Synthesis of conjugated compounds with unusual shape-persistent structures remains a challenge. Herein, utilizing thermodynamically reversible intermolecular Friedel-Crafts alkylation, a dynamic covalent chemistry (DCC) reaction, we facilely synthesized a figure-eight shaped macrocycle FEM and cage molecules CATPA/CACz. X-ray crystallographic analysis confirmed the chemical geometries of tetracation FEM4+(PF6 -)4 and hexacation CACz6+(SbF6 -)6. FEM and CATPA displayed higher photoluminescence quantum yield in solid states compared to that in solution, whereas CACz gave the reverse result. DFT calculations showed that fluorescence-related frontier molecular orbital profiles are mainly localized on their arms consisting of a p-quinodimethane (p-QDM) unit and two benzene rings of triphenylamine or carbazole. Owing to their space-confined structures, variable-temperature 1H NMR measurements showed that FEM, CATPA and FEM4+ have intramolecular restricted motion of phenyl rings on their chromophore arms. Accordingly, FEM and CATPA with flexible triphenylamine subunits displayed aggregation-induced emission behavior (AIE), whereas CACz with a rigid carbazole subunits structure showed no AIE behavior.
Collapse
Affiliation(s)
- Shaoqiang Dong
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Zekun Tong
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Jinfeng Wang
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Yishan Zhang
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Aisen Li
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | | | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| |
Collapse
|
6
|
Wang K, Tang X, Anjali BA, Dong J, Jiang J, Liu Y, Cui Y. Chiral Covalent Organic Cages: Structural Isomerism and Enantioselective Catalysis. J Am Chem Soc 2024; 146:6638-6651. [PMID: 38415351 DOI: 10.1021/jacs.3c12555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Covalent organic cages are a prominent class of discrete porous architectures; however, their structural isomerism remains relatively unexplored. Here, we demonstrate the structural isomerism of chiral covalent organic cages that renders distinct enantioselective catalytic properties. Imine condensations of tetra-topic 5,10-di(3,5-diformylphenyl)-5,10-dihydrophenazine and ditopic 1,2-cyclohexanediamine produce two chiral [4 + 8] organic cage isomers with totally different topologies and geometries that depend on the orientations of four tetraaldehyde units with respect to each other. One isomer (PN-1) has an unprecedented Johnson-type J26 structure, whereas another (PN-2) adopts a tetragonal prismatic structure. After the reduction of the imine linkages, the cages are transformed into two amine bond-linked isomers PN-1R and PN-2R. After binding to Ni(II) ions, both can serve as efficient catalysts for asymmetric Michael additions, whereas PN-2R affords obviously higher enantioselectivity and reactivity than PN-1R presumably because of its large cavity and open windows that can concentrate reactants for the reactions. Density-functional theory (DFT) calculations further confirm that the enantioselective catalytic performance varies depending on the isomer.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Bai Amutha Anjali
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
7
|
Chen L, Li C, Liu ZF, Kuboi Y, Fu E, Vargas LS, Adachi C, Mathevet F, Zhang S. A donor-acceptor cage for circularly polarized TADF emission. Chem Commun (Camb) 2024; 60:1758-1761. [PMID: 38251830 DOI: 10.1039/d3cc05136f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Herein, we report the first example of chiral donor-acceptor cage DA-2 displaying efficient circularly polarized thermally activated delayed fluorescence (CP-TADF) with |glum| values up to 2.1 × 10-3 and PLQY of 32%. A small ΔEST of 0.051 eV and quasi-parallel (θ = 6°) transition electric and magnetic dipole moments were realized from the through-space charge transfer interaction between the parallelly aligned donor and acceptor in DA-2. This D-A cage configuration has provided a novel design strategy for discovering potential efficient CP-TADF emitters.
Collapse
Affiliation(s)
- Lihua Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Chenfei Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yoshiaki Kuboi
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Enguang Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Lydia Sosa Vargas
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM 4 place Jussieu, Paris 75005, France
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Fabrice Mathevet
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM 4 place Jussieu, Paris 75005, France
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
8
|
Wang Z, Zhang QP, Guo F, Ma H, Liang ZH, Yi CH, Zhang C, Chen CF. Self-similar chiral organic molecular cages. Nat Commun 2024; 15:670. [PMID: 38253630 PMCID: PMC10803742 DOI: 10.1038/s41467-024-44922-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The endeavor to enhance utility of organic molecular cages involves the evolution of them into higher-level chiral superstructures with self-similar, presenting a meaningful yet challenging. In this work, 2D tri-bladed propeller-shaped triphenylbenzene serves as building blocks to synthesize a racemic 3D tri-bladed propeller-shaped helical molecular cage. This cage, in turn, acts as a building block for a pair of higher-level 3D tri-bladed chiral helical molecular cages, featuring multilayer sandwich structures and displaying elegant characteristics with self-similarity in discrete superstructures at different levels. The evolutionary procession of higher-level cages reveals intramolecular self-shielding effects and exclusive chiral narcissistic self-sorting behaviors. Enantiomers higher-level cages can be interconverted by introducing an excess of corresponding chiral cyclohexanediamine. In the solid state, higher-level cages self-assemble into supramolecular architectures of L-helical or D-helical nanofibers, achieving the scale transformation of chiral characteristics from chiral atoms to microscopic and then to mesoscopic levels.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China.
| | - Qing-Pu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fei Guo
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Hui Ma
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zi-Hui Liang
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Chang-Hai Yi
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Chun Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
9
|
Cougnon FBL, Stefankiewicz AR, Ulrich S. Dynamic covalent synthesis. Chem Sci 2024; 15:879-895. [PMID: 38239698 PMCID: PMC10793650 DOI: 10.1039/d3sc05343a] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Dynamic covalent synthesis aims to precisely control the assembly of simple building blocks linked by reversible covalent bonds to generate a single, structurally complex, product. In recent years, considerable progress in the programmability of dynamic covalent systems has enabled easy access to a broad range of assemblies, including macrocycles, shape-persistent cages, unconventional foldamers and mechanically-interlocked species (catenanes, knots, etc.). The reversibility of the covalent linkages can be either switched off to yield stable, isolable products or activated by specific physico-chemical stimuli, allowing the assemblies to adapt and respond to environmental changes in a controlled manner. This activatable dynamic property makes dynamic covalent assemblies particularly attractive for the design of complex matter, smart chemical systems, out-of-equilibrium systems, and molecular devices.
Collapse
Affiliation(s)
- Fabien B L Cougnon
- Department of Chemistry and Nanoscience Centre, University of Jyväskylä Jyväskylä Finland
| | - Artur R Stefankiewicz
- Centre for Advanced Technology and Faculty of Chemistry, Adam Mickiewicz University Poznań Poland
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
10
|
Lingas R, Charistos ND, Muñoz-Castro A. Local and global aromaticity under rotation: analysis of two- and three-dimensional representative carbon nanostructures. Phys Chem Chem Phys 2023; 25:14285-14293. [PMID: 37183443 DOI: 10.1039/d3cp00569k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoscaled 2D and 3D carbon structures with closed curved π-surfaces are of relevance in the development of desirable building units for materials science. Such species are able to sustain local and global aromatic circuits involving isolated regions or the overall structural backbone, respectively. Here we account for local and global aromaticity under rotation of representative two- and three-dimensional species involving para-connected and fused edge-sharing phenyl rings ([8]CPP, [10]CPP, CNB), and C60 fullerene at different charge states. Our results denote that nanoscaled 2D global aromatics mimic the behaviour of the most prototypical aromatic 6π-circuit, given by benzene, where the shielding cone properties vary along the rotation motion. In contrast, 3D spherical aromatics remain almost invariant under rotation, given the distinctive characteristics of such species, differing from 2D global aromatics. Dissection of orbital contributions reveals that π-orbitals are determinants for shifting from non-aromatic to spherical aromatic species. Under rotation, the variation of the anisotropic effect inherent to such nanoscaled structures is accounted for, which is relevant to rationalize variation in NMR signal shifts upon the formation of host-guest aggregates.
Collapse
Affiliation(s)
- Rafael Lingas
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Thessaloniki, 54 124, Greece.
| | - Nickolas D Charistos
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Thessaloniki, 54 124, Greece.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
11
|
Olea Ulloa C, Muñoz-Castro A. Infinitene as two fused helicoidal trails of fused rings: evaluation of the magnetic behavior of [12]infinitene and anionic species displaying global aromaticity and antiaromaticity. Phys Chem Chem Phys 2023; 25:8190-8197. [PMID: 36880673 DOI: 10.1039/d2cp06039f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The unique formation of an infinity-shaped carbon backbone made exclusively from fused benzene rings has recently been achieved. The structure of [12]infinitene can be viewed as two fused [6]helicene structures with a central crossover section, depicting a global aromatic behavior along with the overall structure, with deshielding regions along both helicoidal axes. In addition, the 13C-NMR characteristics are discussed. The formation of a cumulative region involving the shielding regions from the aromatic rings is depicted along with the overall aesthetically pleasant structural backbone, which is enhanced at the crossover section. For the evaluated dianionic counterpart, the structure shows a deshielding region above the fused-ring trail and a helicoidal shielding region, ascribed to a global antiaromatic counterpart. The aromaticity is recovered and enhanced at the tetranionic state. Thus, the neutral and tetranionic states are able to build up a long-ranged shielding region, given by the global aromatic behavior, with an enhanced shielding region at the center of the crossover section displaying π-π stacked rings.
Collapse
Affiliation(s)
- Carolina Olea Ulloa
- Carrera de Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
12
|
Gan F, Shen C, Cui W, Qiu H. [1,4]Diazocine-Embedded Electron-Rich Nanographenes with Cooperatively Dynamic Skeletons. J Am Chem Soc 2023; 145:5952-5959. [PMID: 36795894 DOI: 10.1021/jacs.2c13823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Curved nanographenes (NGs) are emerging as promising candidates for organic optoelectronics, supramolecular materials, and biological applications. Here we report a distinctive type of curved NGs bearing a [1,4]diazocine core that is fused with four pentagonal rings. This is formed by Scholl-type cyclization of two adjacent carbazole moieties through an unusual diradical cation mechanism followed by C-H arylation. Owing to the strain in the unique 5-5-8-5-5-membered ring skeleton, the resulting NG adopts an interesting concave-convex cooperatively dynamic structure. By peripheral π-extension, a helicene moiety with fixed helical chirality can be further mounted to modulate the vibration of the concave-convex structure, through which the distant bay region of the curved NG inherits the chirality of the helicene moiety in a reversed fashion. The [1,4]diazocine-embedded NGs show typical electron-rich characteristics and form charge transfer complexes with tunable emissions with a series of electron acceptors. The relatively protruding armchair edge also allows the fusion of three NGs into a C2 symmetric triple diaza[7]helicene which reveals a subtle balance of fixed and dynamic chirality.
Collapse
Affiliation(s)
- Fuwei Gan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute of Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengshuo Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Wenying Cui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute of Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
He L, Jiang C, Chen Z, Ma D, Yi L, Xi Z. A triple-diazonium reagent for virus crosslinking and the synthesis of an azo-linked molecular cage. Org Biomol Chem 2022; 20:7577-7581. [PMID: 36131636 DOI: 10.1039/d2ob01583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first bench-stable triple-diazonium reagent (TDA-1) was rationally designed and synthesized for coupling and crosslinking. The three reactive sites of TDA-1 can react with phenol-containing molecules as well as plant viruses in aqueous buffers efficiently. In addition, a new-type azo-linked cage was constructed by the direct reaction of TDA-1 with a triple-phenol molecule and was characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Lijun He
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhuoyue Chen
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Macleod-Carey D, Muñoz-Castro A. Enabling dual aromaticity in fused nanobelts: evaluation of the magnetic behavior of fused [10]CPP units. Phys Chem Chem Phys 2022; 24:26701-26707. [DOI: 10.1039/d2cp03667c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cyclo-para-phenylene (CPP) nanobelt structures with curved π-surfaces are of relevance in the development of desirable building units for materials science.
Collapse
Affiliation(s)
- Desmond Macleod-Carey
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| |
Collapse
|
15
|
Fang S, Wang M, Wu Y, Guo QH, Li E, Li H, Huang F. Cagearenes: synthesis, characterization, and application for programmed vapor release. Chem Sci 2022; 13:6254-6261. [PMID: 35733889 PMCID: PMC9159107 DOI: 10.1039/d2sc01782b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Here, we announce the establishment of a new family of organic molecular cages, named cagearenes, by taking advantage of a versatile strategy. These cagearenes were prepared via the Friedel–Crafts reaction by condensing two equivalents of a precursor bearing three 1,4-dimethoxybenzene groups and three equivalents of formaldehyde. Two cages, namely cagearene-1 and cagearene-2, are obtained and well characterized. The cagearene-1 solid exhibits the ability to adsorb benzene vapour from an equimolar benzene/cyclohexane mixture with a purity of 91.1%. Then, the adsorbed benzene molecules can be released from the cage at a relatively lower temperature, namely 70 °C, as a consequence of which, cyclohexane with a high purity was left within the cage solid. Heating the cage solid further at 130 °C led to the production of cyclohexane with a purity up to 98.7%. As inferred from the single crystal structures and theoretical calculations, the ability of the cage in programmed release of benzene and cyclohexane results from the different binding modes of these two guests. Two organic cages, cagearene-1 and cagearene-2, are prepared. The cagearene-1 solid selectively absorbs benzene vapor from a benzene/cyclohexane mixture and is used to achieve temperature-controlled programmed vapor release.![]()
Collapse
Affiliation(s)
- Shuai Fang
- Department of Chemistry, State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China +86 571 87953189
| | - Mengbin Wang
- Department of Chemistry, State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China +86 571 87953189
| | - Yating Wu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China
| | - Qing-Hui Guo
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| | - Errui Li
- Department of Chemistry, State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China +86 571 87953189
| | - Hao Li
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| | - Feihe Huang
- Department of Chemistry, State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China +86 571 87953189
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|