1
|
Tamano T, Sato K, Ohmiya H, Inagi S. Organophotoredox-Catalyzed Postfunctionalization of Poly(methacrylate) Derivatives via Radical-Polar Crossover Phosphonylation. Angew Chem Int Ed Engl 2025:e202507572. [PMID: 40325915 DOI: 10.1002/anie.202507572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/07/2025]
Abstract
Photoredox-catalyzed postfunctionalization of poly(meth)acrylate-based copolymers bearing phthalimide moieties can produce novel polymer architectures that are inaccessible using polymerization approaches; however, this method is restricted to radical reactions. To expand the scope of reactions applicable to photoredox-catalyzed postfunctionalization, this study focused on the radical-polar crossover (RPC) process, in which a carbocation equivalent is generated to react with nucleophiles. The organophotoredox-catalyzed reaction of a random copolymer of N-(methacryloxy)phthalimide and methyl acrylate using trialkyl phosphite nucleophiles afforded the corresponding phosphonate-containing polymers. Although simultaneous hydrogenation was inevitable, a novel polymer comprising dialkyl isopropenylphosphonate, propylene, and methyl acrylate units was obtained, which is of interest because phosphonate-containing polymers are potentially applicable as thermoresponsive materials, flame-retardant materials, and additives in Li-ion batteries. A series of copolymers with different components were successfully applied to the postfunctionalization method. The organophotoredox catalysis-based postfunctionalization strategy developed in this study provides versatile functional polymers in a simple, green, and sustainable manner.
Collapse
Affiliation(s)
- Tomohiro Tamano
- Department of Chemical Science and Engineering, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Kosuke Sato
- Department of Chemical Science and Engineering, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Hirohisa Ohmiya
- Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
2
|
Towell SE, Jareczek MJ, Cooke LS, Godfrey DR, Zhukhovitskiy AV. Skeletal Editing of Polymer Backbones and Its Impact Across the Polymer Lifecycle. Acc Chem Res 2025; 58:1275-1283. [PMID: 40173419 DOI: 10.1021/acs.accounts.5c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
ConspectusIn the last five years, interest in the precise modification of molecular cores─termed skeletal editing─has rapidly expanded in the Chemistry community. Beyond the intrinsic value of these transformations, skeletal editing also has value in the attention it brings to under-explored chemical challenges, whose solutions could transform the practice of Chemistry at large. In few contexts does this perspective ring as true as in the realm of polymers. Inspired by the revolutionary power of biologically derived machinery called CRISPR-Cas9 to edit nucleic acid polymers and, consequently, the genetic meaning encoded in them, we envisioned that skeletal editing of synthetic polymer backbones may also enable control over the structure and "meaning"─i.e., properties and function─of plastics. However, the idea of editing polymer backbones brings about numerous fundamental chemical questions that must be answered to make the vision a reality: for instance, how to constructively activate carbon-carbon and carbon-heteroatom bonds that make up typical polymer backbones and how to do so in a site-selective manner? While many fundamental questions have begun to be answered by the small molecule community, they are yet to be applied to the realm of polymers, and such adaptation often begets new scientific challenges. Moreover, as we begin to tackle these questions, we must always consider how advances in skeletal editing of polymer backbones impact the broader contexts of applications and sustainability of plastics.In this Account, we summarize our efforts to advance the skeletal editing of polymer backbones, focusing on how such methods can affect each stage of the polymer lifecycle: (1) provide an entry to previously challenging-to-access functional polymers or to existing ones but from new feedstocks, (2) evolve one type of polymer into another with associated changes in material properties, and (3) enable the breakdown of otherwise intractable polymer backbones. Along the way, we describe our rationale behind the selection and development of reactions utilized for skeletal editing. We explain how small molecule reactions often need to be adapted to suit polymeric substrates and the methodology optimizations we needed to do to accomplish our edits. We also discuss the considerations involved in the selection or design of polymeric substrates for editing with an eye toward what edits can add to polymer function and how to advance the field. We conclude with an outlook on outstanding challenges that we aim to address in future work establishing areas for future exploration within each of our topic areas.
Collapse
Affiliation(s)
- Sydney E Towell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark J Jareczek
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lauren S Cooke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel R Godfrey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aleksandr V Zhukhovitskiy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Towell SE, Ratushnyy M, Cooke LS, Lewis GM, Zhukhovitskiy AV. Deconstruction of rubber via C-H amination and aza-Cope rearrangement. Nature 2025; 640:384-389. [PMID: 40140578 DOI: 10.1038/s41586-025-08716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/30/2025] [Indexed: 03/28/2025]
Abstract
Limited strategies exist for chemical recycling of commodity diene polymers, like those found in tyres1-3. Here we apply C-H amination and backbone rearrangement of polymers to deconstruct these materials into precursors for epoxy resins. Specifically, we develop a sulfur diimide reagent4,5 that enables up to about 35% allylic amination of diene polymers and rubber. Then, we apply the cationic 2-aza-Cope rearrangement to deconstruct aminated diene polymers. In a model system, we see molecular weight reduction from 58,100 to approximately 400 g mol-1, and aminated post-consumer rubber is deconstructed over 6 hours into soluble amine-functionalized polymers, which can be utilized to prepare epoxy thermosets with similar stiffnesses to commercial bisphenol A-derived resins6. Altogether, this work demonstrates the power of C-H amination and backbone rearrangement to enable chemical recycling of post-consumer materials.
Collapse
Affiliation(s)
- Sydney E Towell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maxim Ratushnyy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren S Cooke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Geoffrey M Lewis
- Center for Sustainable Systems, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
4
|
Li Z, Zhang X, Zhao Y, Tang S. Mechanochemical Backbone Editing for Controlled Degradation of Vinyl Polymers. Angew Chem Int Ed Engl 2024; 63:e202408225. [PMID: 38801168 DOI: 10.1002/anie.202408225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The chemically inert nature of fully saturated hydrocarbon backbones endows vinyl polymers with desirable durability, but it also leads to their significant environmental persistence. Enhancing the sustainability of these materials requires a pivotal yet challenging shift: transforming the inert backbone into one that is degradable. Here, we present a versatile platform for mechanochemically editing the fully saturated backbone of vinyl polymers towards degradable polymer chains by integrating cyclobutene-fused succinimide (CBS) units along backbone through photo-iniferter reversible addition-fragmentation chain-transfer (RAFT) copolymerization. Significantly, the evenly insertion of CBS units does not compromise thermal or chemical stability but rather offers a means to adjust the properties of polymethylacrylate (PMA). Meanwhile, reactive acyclic imide units can be selectively introduced to the backbone through mechanochemical activation (pulse ultrasonication or ball-milling grinding) when required. Subsequent hydrolysis of the acyclic imide groups enables efficient degradation, yielding telechelic oligomers. This approach holds promise for inspiring the design and modification of more environmentally friendly vinyl polymers through backbone editing.
Collapse
Affiliation(s)
- Zhuang Li
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohui Zhang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yajun Zhao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Ditzler RAJ, Rapagnani RM, Berney NK, Koby RF, Krist EC, Kruse BJ, Fokwa HD, Tonks IA, Zhukhovitskiy AV. Architectural Editing of Polyesters and Polyurethanes via Palladium(II)-Catalyzed [3,3]-Sigmatropic Oxo-Rearrangements. J Am Chem Soc 2024; 146:15286-15292. [PMID: 38776105 DOI: 10.1021/jacs.4c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Architecture underlies the thermomechanical properties of polymers. Yet, few strategies are available to tune a polymer's architecture after it is prepared without altering its chemical composition. The ability to edit the architecture of a polymer would dramatically expand the accessible architecture-property space of polymeric materials. Herein, we disclose a backbone rearrangement approach to tune the short-chain branching of polymers. Specifically, we demonstrate that palladium(II)-catalyzed [3,3]-sigmatropic oxo-rearrangements can transform branched polyesters and polyurethanes to their linear counterparts. While the effects on materials properties are generally subtle in the case of polyesters, more dramatic changes are observed in the case of polyurethanes: two polyurethanes undergo a soluble-to-insoluble transition, and one exhibits a dramatic increase in both strain at break and toughness after rearrangement. Additionally, the incorporation of alkenes in the polymer backbone through the rearrangement enables facile deconstruction via ethenolysis. In all, we disclose a powerful and broad-scope strategy to edit the architecture of polymer backbones and thereby tune their physical and chemical properties.
Collapse
Affiliation(s)
- Rachael A J Ditzler
- Department of Chemistry, University of North Carolina─Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel M Rapagnani
- Department of Chemistry, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Nathaniel K Berney
- Department of Chemistry, University of North Carolina─Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ross F Koby
- Department of Chemistry, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Erin C Krist
- Department of Chemistry, University of North Carolina─Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin J Kruse
- Department of Chemistry, University of North Carolina─Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hilary D Fokwa
- Department of Chemistry, University of North Carolina─Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ian A Tonks
- Department of Chemistry, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Aleksandr V Zhukhovitskiy
- Department of Chemistry, University of North Carolina─Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Yuan H, Takahashi K, Hayashi S, Suzuki M, Fujikake N, Kasuya KI, Zhou J, Nakagawa S, Yoshie N, Li C, Yamaguchi K, Nozaki K. Synthesis of Novel Polymers with Biodegradability by Main-Chain Editing of Chiral Polyketones. J Am Chem Soc 2024; 146:13658-13665. [PMID: 38710172 DOI: 10.1021/jacs.4c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although the use of biodegradable plastics is suitable for unrecoverable, single-use plastic, their high production cost and much lower variety compared to commodity plastics limit their application. In this study, we developed a new polymer with potential biodegradability, poly(ketone/ester), synthesized from propylene and carbon monoxide. Propylene and carbon monoxide are easily available at low costs from fossil resources, and they can also be derived from biomass. Using an atom insertion reaction to the main chain of the polymer, the main-chain editing of the polymer molecule proceeded with up to 89% selectivity for atom insertion over main-chain cleavage.
Collapse
Affiliation(s)
- Haobo Yuan
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kohei Takahashi
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shinya Hayashi
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Miwa Suzuki
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma 371-8510, Japan
| | - Nobuhiro Fujikake
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma 371-8510, Japan
| | - Ken-Ichi Kasuya
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma 371-8510, Japan
| | - Jian Zhou
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Chifeng Li
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Zotov V, Vijjamarri S, Mousavi SD, Du G. Poly(silyl ether)s as Degradable and Sustainable Materials: Synthesis and Applications. Molecules 2024; 29:1498. [PMID: 38611778 PMCID: PMC11013004 DOI: 10.3390/molecules29071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Polymer research is currently focused on sustainable and degradable polymers which are cheap, easy to synthesize, and environmentally friendly. Silicon-based polymers are thermally stable and can be utilized in various applications, such as columns and coatings. Poly(silyl ether)s (PSEs) are an interesting class of silicon-based polymers that are easily hydrolyzed in either acidic or basic conditions due to the presence of the silyl ether Si-O-C bond. Synthetically, these polymers can be formed in several different ways, and the most effective and environmentally friendly synthesis is dehydrogenative cross coupling, where the byproduct is H2 gas. These polymers have a lot of promise in the polymeric materials field due to their sustainability, thermal stability, hydrolytic degradability, and ease of synthesis, with nontoxic byproducts. In this review, we will summarize the synthetic approaches for the PSEs in the recent literature, followed by the properties and applications of these materials. A conclusion and perspective will be provided at the end.
Collapse
Affiliation(s)
| | | | | | - Guodong Du
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA; (V.Z.); (S.V.)
| |
Collapse
|
8
|
Hamaguchi A, Terasaki M, Adachi K. Ring-opening-isomerization anionic polymerization via Brook rearrangement. Chem Commun (Camb) 2024; 60:2954-2957. [PMID: 38375689 DOI: 10.1039/d4cc00144c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Ring-opening isomerization polymerization was developed using a combination of a ring-opening reaction of epoxides and subsequent Brook rearrangement. An epoxy monomer with a benzyltrimethylsilyl group was designed for the polymerization. Characterization of the obtained polymer by NMR and MALDI-TOF-MS indicated that polymerization proceeded exclusively via a ring-opening-isomerization anionic polymerization mechanism.
Collapse
Affiliation(s)
- Asuka Hamaguchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Masaya Terasaki
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kaoru Adachi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
9
|
Ditzler RAJ, King AJ, Towell SE, Ratushnyy M, Zhukhovitskiy AV. Editing of polymer backbones. Nat Rev Chem 2023; 7:600-615. [PMID: 37542179 DOI: 10.1038/s41570-023-00514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/06/2023]
Abstract
Polymers are at the epicentre of modern technological progress and the associated environmental pollution. Considerations of both polymer functionality and lifecycle are crucial in these contexts, and the polymer backbone - the core of a polymer - is at the root of these considerations. Just as the meaning of a sentence can be altered by editing its words, the function and sustainability of a polymer can also be transformed via the chemical modification of its backbone. Yet, polymer modification has primarily been focused on the polymer periphery. In this Review, we focus on the transformations of the polymer backbone by defining some concepts fundamental to this topic (for example, 'polymer backbone' and 'backbone editing') and by collecting and categorizing examples of backbone editing scattered throughout a century's worth of chemical literature, and outline critical directions for further research. In so doing, we lay the foundation for the field of polymer backbone editing and hope to accelerate its development.
Collapse
Affiliation(s)
- Rachael A J Ditzler
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew J King
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sydney E Towell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maxim Ratushnyy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
10
|
Sang X, Mo Y, Li S, Liu X, Cao W, Feng X. Bimetallic tandem catalysis-enabled enantioselective cycloisomerization/carbonyl-ene reaction for construction of 5-oxazoylmethyl α-silyl alcohol. Chem Sci 2023; 14:8315-8320. [PMID: 37564412 PMCID: PMC10411629 DOI: 10.1039/d3sc01048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
A bimetallic tandem catalysis-enabled enantioselective cycloisomerization/carbonyl-ene reaction was developed. The reaction proceeded well with a broad range of N-propargylamides and acylsilanes, affording the target chiral 5-oxazoylmethyl α-silyl alcohols in up to 95% yield and 99% ee under mild conditions. Importantly, this facile protocol was available for the late-stage modification of several bioactive molecules. Based on the mechanistic study and control experiments, a possible catalytic cycle and transition state are proposed to elucidate the reaction process and enantioinduction.
Collapse
Affiliation(s)
- Xinpeng Sang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Yuhao Mo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Shiya Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
11
|
Li Y, Zhang H, Li J, Shen D, Liu Z. Ru-Catalyzed Synthesis of α,β-Unsaturated Acylsilanes and Its Applications in C–N Bond Formation. Org Lett 2022; 24:9163-9167. [DOI: 10.1021/acs.orglett.2c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yongli Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jiawei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dalong Shen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhenxing Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
12
|
Hada R, Kanazawa A, Aoshima S. Degradable Silyl Ether Polymers Synthesized by Sequence-Controlled Cationic Terpolymerization of 1,3-Dioxa-2-silacycloalkanes with Vinyl Ethers and Aldehydes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryosuke Hada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
13
|
Zhukhovitskiy AV, Ratushnyy M, Ditzler RAJ. Advancing the Logic of Polymer Synthesis via Skeletal Rearrangements. Synlett 2022. [DOI: 10.1055/s-0041-1737456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractPolymers are ubiquitous materials that have driven technological innovation since the middle of the 20th century. As such, the logic that guides polymer synthesis merit considerable attention. Thus far, this logic has often been ‘forward-synthetic’, which constrains the accessible structures of polymer materials. In this article, we emphasize the benefits of ‘retrosynthetic’ logic and posit that the development of skeletal rearrangements of polymer backbones is central to the realization of this logic. To illustrate this point, we discuss two recent examples from our laboratory – Brook and Ireland–Claisen rearrangements of polymer backbones – and contextualize them in prior reports of sigmatropic rearrangements and skeletal rearrangements of polymers. We envision that further development of skeletal rearrangements of polymers will enable advances in not only the chemistry of such rearrangements and the logic of polymer synthesis, but also polymer re- and upcycling.
Collapse
|
14
|
Fang X, Wen S, Jin P, Bao W, Liu S, Cong H, Shen X. Synthesis of Enantioenriched Fluorinated Enol Silanes Enabled by Asymmetric Reductive Coupling of Fluoroalkylacylsilanes and 1,3-Enynes and Brook Rearrangement. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaowu Fang
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Songwei Wen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Peishen Jin
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Wenjing Bao
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Shanshan Liu
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Hengjiang Cong
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiao Shen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
15
|
Ditzler RAJ, Zhukhovitskiy AV. Sigmatropic Rearrangements of Polymer Backbones: Vinyl Polymers from Polyesters in One Step. J Am Chem Soc 2021; 143:20326-20331. [PMID: 34809424 DOI: 10.1021/jacs.1c09657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polymer modification is a fundamental scientific challenge, as a means of both upcycling plastics and extracting a stimulus response from them. To date, the overwhelming majority of polymer modifications has focused on the polymer periphery. Herein, we demonstrate nearly quantitative, scission-free modification of polymer backbones, namely, a metamorphosis of polyesters into vinyl polymers resembling commodity materials via the Ireland-Claisen sigmatropic rearrangement. The glass transition temperature (Tg) and thermal stability of the polyesters undergo dramatic changes post-transformation. Beyond polymer modification, our work advances the application of retrosynthetic analysis in polymer synthesis; the nontraditional production of vinyl polymers from lactones opens the door to a slew of previously inaccessible materials.
Collapse
Affiliation(s)
- Rachael A J Ditzler
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aleksandr V Zhukhovitskiy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|