1
|
Wang C, Liu X, Wang Q, Fang WH, Chen X. Unveiling Mechanistic Insights and Photocatalytic Advancements in Intramolecular Photo-(3 + 2)-Cycloaddition: A Comparative Assessment of Two Paradigmatic Single-Electron-Transfer Models. JACS AU 2024; 4:419-431. [PMID: 38425917 PMCID: PMC10900211 DOI: 10.1021/jacsau.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 03/02/2024]
Abstract
The synthesis of 1-aminonorbornane (1-aminoNB), a potential aniline bioisostere, through photochemistry or photoredox catalysis signifies a remarkable breakthrough with implications in organic chemistry, pharmaceutical chemistry, and sustainable chemistry. However, an understanding of the underlying mechanisms involved in these reactions remains limited and ambiguous. Herein, we employ high-precision CASPT2//CASSCF calculations to elucidate the intricate mechanisms regulating the intramolecular photo-(3 + 2)-cycloaddition reactions for the synthesis of 1-aminoNB in the presence or absence of the Ir-complex-based photocatalyst. Our investigations delve into radical cascades, stereoselectivity, particularly single-electron-transfer (SET) events, etc. Furthermore, we innovatively introduce and compare two SET models integrating Marcus electron-transfer theory and transition-state theory. These models combined with kinetic data contribute to recognizing the critical control factors in diverse photocatalysis, thereby guiding the design and manipulation of photoredox catalysis as well as the improvement and modification of photocatalysts.
Collapse
Affiliation(s)
- Chu Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Xiao Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Qian Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| |
Collapse
|
2
|
Zhu HY, Li QS. Theoretical Understanding on the Facilitated Photoisomerization of a Carbonyl Supported Borane System. Chemphyschem 2023:e202300435. [PMID: 37646234 DOI: 10.1002/cphc.202300435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Boron compound BOMes2 containing an internal B-O bond undergoes highly efficient photoisomerization, followed by sequential structural transformations, resulting in a rare eight-membered B, O-heterocycle (S. Wang, et al. Org. Lett. 2019, 21, 5285-5289). In this work, the detailed reaction mechanisms of such a unique carbonyl-supported tetracoordinate boron system in the first excited singlet (S1 ) state and the ground (S0 ) state were investigated by using the complete active space self-consistent field and its second-order perturbation (MS-CASPT2//CASSCF) method combined with time-dependent density functional theory (TD-DFT). Moreover, an imine-substituted tetracoordinated organic boron system (BNMes2 ) was selected for comparative study to explore the intrinsic reasons for the difference in reactivity between the two types of compounds. Steric factor was found to influence the photoisomerization activity of BNMes2 and BOMes2 . These results rationalize the experimental observations and can provide helpful insights into understanding the excited-state dynamics of heteroatom-doped tetracoordinate organoboron compounds, which facilitates the rational design of boron-based materials with superior photoresponsive performances.
Collapse
Affiliation(s)
- Hong-Yang Zhu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, P. R. China
| | - Quan-Song Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, P. R. China
| |
Collapse
|
3
|
Li W, Wang J, Fang W, Wu L, Chen X. Co-function Mechanisms of Chlorine and Alkoxy Radicals in Cerium-Catalyzed C-H Functionalization of Alkane Mediated by Visible Light. J Phys Chem Lett 2023:6187-6192. [PMID: 37379529 DOI: 10.1021/acs.jpclett.3c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Identification of radical intermediates for the catalytic functionalization of alkanes offers a number of unique challenges and has recently raised a controversial issue concerning the subtle role of chlorine versus alkoxy radicals in cerium photocatalysis. This study is an attempt to settle the controversy within the theoretical frameworks of Marcus electron transfer and transition state theory. Co-function mechanisms were proposed together with a scheme of kinetic evaluations to account for ternary dynamic competition among photolysis, back electron transfer, and hydrogen atom transfer (HAT). Cl•-based HAT has been proven to initially control the early dynamics of the photocatalytic transformation on the picosecond to nanosecond time scale, which is subsequently taken over by a postnanosecond event of alkoxy radical-mediated HAT. The theoretical models developed herein provide a uniform understanding of the continuous time dynamics of photogenerated radicals to address some paradoxical arguments in lanthanide photocatalysis.
Collapse
Affiliation(s)
- Weijia Li
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Juanjuan Wang
- Laboratory of Beam Technology and Energy Materials, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
- College of Nuclear Science and Technology, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Weihai Fang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Liangliang Wu
- Laboratory of Beam Technology and Energy Materials, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xuebo Chen
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| |
Collapse
|
4
|
Zhang X, Liu L, Li W, Wang C, Wang J, Fang WH, Chen X. Extended Single-Electron Transfer Model and Dynamically Associated Energy Transfer Event in a Dual-Functional Catalyst System. JACS AU 2023; 3:1452-1463. [PMID: 37234115 PMCID: PMC10206599 DOI: 10.1021/jacsau.3c00098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Organic photocatalysis has been developed flourishingly to rely on bimolecular energy transfer (EnT) or oxidative/reductive electron transfer (ET), promoting a variety of synthetic transformations. However, there are rare examples to merge EnT and ET processes rationally within one chemical system, of which the mechanistic investigation still remains in its infancy. Herein, the first mechanistic illustration and kinetic assessments of the dynamically associated EnT and ET paths were conducted for realizing the C-H functionalization in a cascade photochemical transformation of isomerization and cyclization by using the dual-functional organic photocatalyst of riboflavin. An extended single-electron transfer model of transition-state-coupled dual-nonadiabatic crossings was explored to analyze the dynamic behaviors in the proton transfer-coupled cyclization. This can also be used to clarify the dynamic correlation with the EnT-driven E → Z photoisomerization that has been kinetically evaluated by using Fermi's golden rule with the Dexter model. The present computational results of electron structures and kinetic data contribute to a fundamental basis for understanding the photocatalytic mechanism of the combined operation of EnT and ET strategies, which will guide the design and manipulation for the implementation of multiple activation modes based on a single photosensitizer.
Collapse
Affiliation(s)
- Xiaorui Zhang
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Lin Liu
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Weijia Li
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Chu Wang
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Juanjuan Wang
- College
of Nuclear Science and Technology, Beijing
Normal University, Xin-wai-da-jie
No. 19, Beijing 100875, China
- Laboratory
of Beam Technology and Energy Materials, Advanced Institute of Natural
Science, Beijing Normal University, Zhuhai 519087, China
| | - Wei-Hai Fang
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Xuebo Chen
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| |
Collapse
|
5
|
Yang Y, Liang J, Li W, Yang W, Wang C, Zhang X, Fang WH, Guo Z, Chen X. Mechanistic Understanding and Reactivity Analyses for the Photochemistry of Disubstituted Tetrazoles. J Phys Chem A 2023; 127:4115-4124. [PMID: 37133205 DOI: 10.1021/acs.jpca.3c01594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The photolysis of tetrazoles has undergone extensive research. However, there are still some problems to be solved in terms of mechanistic understanding and reactivity analyses, which leaves room for theoretical calculations. Herein, multiconfiguration perturbation theory at the CASPT2//CASSCF level was employed to account for electron correction effects involved in the photolysis of four disubstituted tetrazoles. Based on calculations of vertical excitation properties and evaluations of intersystem crossing (ISC) efficiencies in the Frank-Condon region, the combination of space and electronic effects is found in maximum-absorption excitation. Two types of ISC (1ππ* → 3nπ*, 1ππ* → 3ππ*) are determined in disubstituted tetrazoles, and the obtained rates follow the El-Sayed rule. Through mapping three representative types of minimum energy profiles for the photolysis of 1,5-, and 2,5-disubstituted tetrazoles, a conclusion can be drawn that the photolysis of tetrazoles exhibits reactivity characteristic of bond-breaking selectivity. Kinetic evaluations show that the photogeneration of singlet imidoylnitrene operates predominately over that in the triplet state, which can be confirmed by a double-well model in the triplet potential energy surface of 1,5-disubstituted tetrazole. Similar mechanistic explorations and reactivity analyses were also applied to the photolysis of 2,5-disubstituted tetrazole to unveil fragmentation patterns of nitrile imine generation. All computational efforts allow us to better understand the photoreactions of disubstituted tetrazoles and to provide useful strategies for regulating their unique reactivity.
Collapse
Affiliation(s)
- Yanting Yang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jing Liang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Weijia Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wenjing Yang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Chu Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiaorui Zhang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
6
|
Yang W, Chen Y, Mei M, Li W, Wang C, Yang Y, Liang J, Guo Z, Wu L, Chen X. Synergetic argentophilic and through space electronic interactions in a single-crystal-to-single-crystal photocycloaddition reaction: a mechanistic study. Phys Chem Chem Phys 2023; 25:12783-12790. [PMID: 37128988 DOI: 10.1039/d3cp00838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ag(I) is able to mediate single-crystal-to-single-crystal transformation through [2+2] photocycloaddition to prepare high-conductivity materials. However, the intrinsic mechanism of Ag(I) mediation, the detailed photophysical and photochemical processes as well as the origin of the enhanced conductivity of nanocrystals are still unclear. In this work, the comprehensive kinetic scheme and regulation mechanism are established by the accurate QM/MM calculations at the CASPT2//CASSCF/AMBER level of theory with consideration of the crystal environment. We find that the argentophilic interaction and through space electronic interaction are the key factors that promote Ag(I)-mediated [2+2] PCA reactions and may account for the enhancement of conductivity. These mechanistic insights into the Ag(I)-regulated photo-dimerization in the crystal surrounding are beneficial for the design of the structurally and electrically favorable skeletons of a metal-organic coordination polymer.
Collapse
Affiliation(s)
- Wenjing Yang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China.
| | - Yonglin Chen
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China.
| | - Min Mei
- College of Science, Hunan College for Preschool Education, Changde, Hunan, 415000, P. R. China
| | - Weijia Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Chu Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Yanting Yang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Jing Liang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China.
| | - Liangliang Wu
- Laboratory of Beam Technology and Energy Materials, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, P. R. China.
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| |
Collapse
|
7
|
Yang Y, Liu L, Fang WH, Shen L, Chen X. Theoretical Exploration of Energy Transfer and Single Electron Transfer Mechanisms to Understand the Generation of Triplet Nitrene and the C(sp 3)-H Amidation with Photocatalysts. JACS AU 2022; 2:2596-2606. [PMID: 36465545 PMCID: PMC9709952 DOI: 10.1021/jacsau.2c00490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 05/20/2023]
Abstract
Mechanistic explorations and kinetic evaluations were performed based on electronic structure calculations at the CASPT2//CASSCF level of theory, the Fermi's golden rule combined with the Dexter model, and the Marcus theory to unveil the key factors regulating the processes of photocatalytic C(sp3)-H amidation starting from the newly emerged nitrene precursor of hydroxamates. The highly reactive nitrene was found to be generated efficiently via a triplet-triplet energy transfer process and to be benefited from the advantages of hydroxamates with long-range charge-transfer (CT) excitation from the N-centered lone pair to the 3,5-bis(trifluoromethyl)benzoyl group. The properties of the metal-to-ligand charge-transfer (MLCT) state of photocatalysts, the functionalization of chemical moieties for substrates involved in the charge-transfer (CT) excitation, such as the electron-withdrawing trifluoromethyl group, and the energetic levels of singlet and triplet reaction pathways may regulate the reaction yield of C(sp3)-H amidation. Kinetic evaluations show that the triplet-triplet energy transfer is the main driving force of the reaction rather than the single electron transfer process. The effects of electronic coupling, molecular rigidity, and excitation energies on the energy transfer efficiency were further discussed. Finally, we investigated the inverted behavior of single-electron transfer, which is correlated unfavorably to the catalytic efficiency and amidation reaction. All theoretical explorations allow us to better understand the generation of nitrene with visible-light photocatalysts, to expand highly efficient substrate sources, and to broaden our scope of available photosensitizers for various cross-coupling reactions and the construction of N-heterocycles.
Collapse
|
8
|
Zhu H, Li Q. Understanding of Photo‐Induced Reversible Rearrangement from Borepin to Borirane. Chemistry 2022; 28:e202201360. [DOI: 10.1002/chem.202201360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Hong‐Yang Zhu
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 P. R. China
| | - Quan‐Song Li
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 P. R. China
| |
Collapse
|
9
|
Shi Q, Pei Z, Song J, Li SJ, Wei D, Coote ML, Lan Y. Diradical Generation via Relayed Proton-Coupled Electron Transfer. J Am Chem Soc 2022; 144:3137-3145. [PMID: 35133141 DOI: 10.1021/jacs.1c12360] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diradical generation followed by radical-radical cross-coupling is a powerful synthetic tool, but its detailed mechanism has yet to be established. Herein, we proposed and confirmed a new model named relayed proton-coupled electron transfer (relayed-PCET) for diradical generation, which could open a door for new radical-radical cross-coupling reactions. Quantum mechanics calculations were performed on a selected carbene-mediated diradical cross-coupling reaction model and a designed model, and the exact electronic structural changes during the radical processes have been observed for the first time.
Collapse
Affiliation(s)
- Qianqian Shi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhipeng Pei
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
10
|
Guo L, Wang J, Luo J, Shi Q, Wei D, Chen X. Prediction on chemoselectivity for selected organocatalytic reactions by the DFT version of the Hückel-defined free valence index. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01118b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DFT version of the Hückel-defined free valence (HFV) index has been suggested and successfully used for predicting the origin of chemoselectivity in the selected organocatalytic reactions.
Collapse
Affiliation(s)
- Limin Guo
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Juanjuan Wang
- Key Laboratory of Theoretical and Computational Photochemistry of the Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
- Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Jing Luo
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Qianqian Shi
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Donghui Wei
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Xuebo Chen
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
- Key Laboratory of Theoretical and Computational Photochemistry of the Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| |
Collapse
|