1
|
Cassady H, Martin E, Liu Y, Bhattacharya D, Rochow MF, Dyer BA, Reinhart WF, Cooper VR, Hickner MA. Database of Nonaqueous Proton-Conducting Materials. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16901-16908. [PMID: 40059360 PMCID: PMC11931497 DOI: 10.1021/acsami.4c22618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/21/2025]
Abstract
This work presents the assembly of 48 papers, representing 74 different compounds and blends, into a machine-readable database of nonaqueous proton-conducting materials. SMILES was used to encode the chemical structures of the molecules, and we tabulated the reported proton conductivity, proton diffusion coefficient, and material composition for a total of 3152 data points. The data spans a broad range of temperatures ranging from -70 to 260 °C. To explore this landscape of nonaqueous proton conductors, DFT was used to calculate the proton affinity of 18 unique proton carriers. The results were then compared to the activation energy derived from fitting experimental data to the Arrhenius equation. It was found that while the widely recognized positive correlation between the activation energy and proton affinity may hold among closely related molecules, this correlation does not necessarily apply across a broader range of molecules. This work serves as an example of the potential analyses that can be conducted using literature data combined with emerging research tools in computation and data science to address specific materials design problems.
Collapse
Affiliation(s)
- Harrison
J. Cassady
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824-1312, United States
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley 94720-8099, California, United States
| | - Emeline Martin
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824-1312, United States
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-1382, United
States
| | - Yifan Liu
- Materials
Science and Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-2008, United States
| | - Debjyoti Bhattacharya
- Materials
Science and Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Maria F. Rochow
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Brock A. Dyer
- Department
of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Wesley F. Reinhart
- Materials
Science and Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
- Institute
for Computational and Data Sciences, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Valentino R. Cooper
- Materials
Science and Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-2008, United States
| | - Michael A. Hickner
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824-1312, United States
| |
Collapse
|
2
|
Hennes LM, Behringer C, Farshad M, Schaefer JL, Whitmer JK. Controlling Electrostatics To Enhance Conductivity in Structured Electrolytes. J Phys Chem Lett 2025; 16:1590-1596. [PMID: 39905692 DOI: 10.1021/acs.jpclett.4c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Solid-state electrolytes are currently being explored as a safe material capable of addressing consumer energy-storage demands. Solid polymer electrolytes, in particular, offer a high energy density and improved safety when compared to liquid-based electrolytes, but tend to have a significantly lower ionic conductivity. We hypothesize structured ionic liquids can enhance conductivity compared to polymer electrolytes. Here, we explore the performance of these materials through coarse-grained molecular dynamics simulation. While we observe similar phase behavior (incorporating solid, smectic, and liquid phases) to that seen in experiments, we also observe significantly more mobility in the cationic species compared to the anionic species before the system reaches an arrest transition. We further discuss how the general results within this paper can guide further studies and target the design of new highly conductive solid electrolytes with the potential to enable the use of multivalent ionic species as ion conductors.
Collapse
Affiliation(s)
- Logan M Hennes
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Chloe Behringer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mohsen Farshad
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer L Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan K Whitmer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
Achar SK, Bernasconi L, DeMaio RI, Howard KR, Johnson JK. In Silico Demonstration of Fast Anhydrous Proton Conduction on Graphanol. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37192530 DOI: 10.1021/acsami.3c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Development of new materials capable of conducting protons in the absence of water is crucial for improving the performance, reducing the cost, and extending the operating conditions for proton exchange membrane fuel cells. We present detailed atomistic simulations showing that graphanol (hydroxylated graphane) will conduct protons anhydrously with very low diffusion barriers. We developed a deep learning potential (DP) for graphanol that has near-density functional theory accuracy but requires a very small fraction of the computational cost. We used our DP to calculate proton self-diffusion coefficients as a function of temperature, to estimate the overall barrier to proton diffusion, and to characterize the impact of thermal fluctuations as a function of system size. We propose and test a detailed mechanism for proton conduction on the surface of graphanol. We show that protons can rapidly hop along Grotthuss chains containing several hydroxyl groups aligned such that hydrogen bonds allow for conduction of protons forward and backward along the chain without hydroxyl group rotation. Long-range proton transport only takes place as new Grotthuss chains are formed by rotation of one or more hydroxyl groups in the chain. Thus, the overall diffusion barrier consists of a convolution of the intrinsic proton hopping barrier and the intrinsic hydroxyl rotation barrier. Our results provide a set of design rules for developing new anhydrous proton conducting membranes with even lower diffusion barriers.
Collapse
Affiliation(s)
- Siddarth K Achar
- Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Leonardo Bernasconi
- Center for Research Computing and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ruby I DeMaio
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Katlyn R Howard
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - J Karl Johnson
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
4
|
Bruckner EP, Curk T, Đorđević L, Wang Z, Yang Y, Qiu R, Dannenhoffer AJ, Sai H, Kupferberg J, Palmer LC, Luijten E, Stupp SI. Hybrid Nanocrystals of Small Molecules and Chemically Disordered Polymers. ACS NANO 2022; 16:8993-9003. [PMID: 35588377 DOI: 10.1021/acsnano.2c00266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic crystals formed by small molecules can be highly functional but are often brittle or insoluble structures with limited possibilities for use or processing from a liquid phase. A possible solution is the nanoscale integration of polymers into organic crystals without sacrificing long-range order and therefore function. This enables the organic crystals to benefit from the advantageous mechanical and chemical properties of the polymeric component. We report here on a strategy in which small molecules cocrystallize with side chains of chemically disordered polymers to create hybrid nanostructures containing a highly ordered lattice. Synchrotron X-ray scattering, absorption spectroscopy, and coarse-grained molecular dynamics simulations reveal that the polymer backbones form an "exo-crystalline" layer of disordered chains that wrap around the nanostructures, becoming a handle for interesting properties. The morphology of this "hybrid bonding polymer" nanostructure is dictated by the competition between the polymers' entropy and the enthalpy of the lattice allowing for control over the aspect ratio of the nanocrystal by changing the degree of polymer integration. We observed that nanostructures with an exo-crystalline layer of polymer exhibit enhanced fracture strength, self-healing capacity, and dispersion in water, which benefits their use as light-harvesting assemblies in photocatalysis. Guided by computation, future work could further explore these hybrid nanostructures as components for functional materials.
Collapse
Affiliation(s)
- Eric P Bruckner
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Tine Curk
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Ziwei Wang
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Yang Yang
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Ruomeng Qiu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam J Dannenhoffer
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Jacob Kupferberg
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Erik Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Paren BA, Häußler M, Rathenow P, Mecking S, Winey KI. Decoupled Cation Transport within Layered Assemblies in Sulfonated and Crystalline Telechelic Polyethylenes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin A. Paren
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, Pennsylvania 19104, United States
| | - Manuel Häußler
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Patrick Rathenow
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Karen I. Winey
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Park J, Easterling CP, Armstrong CC, Huber DL, Bowman JI, Sumerlin BS, Winey KI, Taylor MK. Nanoscale layers of precise ion-containing polyamides with lithiated phenyl sulfonate in the polymer backbone. Polym Chem 2022. [DOI: 10.1039/d2py00802e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise polyamide ionomer produces well-defined nanoscale layers.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Charles P. Easterling
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Christopher C. Armstrong
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Dale L. Huber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Jared I. Bowman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mercedes K. Taylor
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
7
|
Chai S, Xu F, Zhang R, Wang X, Zhai L, Li X, Qian HJ, Wu L, Li H. Hybrid Liquid-Crystalline Electrolytes with High-Temperature-Stable Channels for Anhydrous Proton Conduction. J Am Chem Soc 2021; 143:21433-21442. [PMID: 34886669 DOI: 10.1021/jacs.1c11884] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modern electrochemical and electronic devices require advanced electrolytes. Liquid crystals have emerged as promising electrolyte candidates due to their good fluidity and long-range order. However, the mesophase of liquid crystals is variable upon heating, which limits their applications as high-temperature electrolytes, e.g., implementing anhydrous proton conduction above 100 °C. Here, we report a highly stable thermotropic liquid-crystalline electrolyte based on the electrostatic self-assembly of polyoxometalate (POM) clusters and zwitterionic polymer ligands. These electrolytes can form a well-ordered mesophase with sub-10 nm POM-based columnar domains, attributed to the dynamic rearrangement of polymer ligands on POM surfaces. Notably, POMs can serve as both electrostatic cross-linkers and high proton conductors, which enable the columnar domains to be high-temperature-stable channels for anhydrous proton conduction. These nanochannels can maintain constant columnar structures in a wide temperature range from 90 to 160 °C. This work demonstrates the unique role of POMs in developing high-performance liquid-crystalline electrolytes, which can provide a new route to design advanced ion transport systems for energy and electronic applications.
Collapse
Affiliation(s)
- Shengchao Chai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Fengrui Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liang Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|