1
|
Xiong D, Lai Z, Chen J, Yuan H, Wang H. Ketene Conversion Chemistry within Mordenite Zeolite: Pore-Size-Dependent Reaction Mechanism, Product Selectivity, and Catalytic Activity. J Am Chem Soc 2025; 147:17303-17314. [PMID: 40350608 DOI: 10.1021/jacs.5c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The oxide-zeolite bifunctional catalyst for ketene-bridged syngas conversion has gained great attention for addressing the selectivity challenge in light olefin production, where zeolite dominates the ketene conversion selectivity. However, the atomic-level mechanism underlying ketene-to-light olefin conversion within zeolite remains unclear. Herein, we focus on mordenite (MOR) zeolite and perform systematic first-principles calculations combined with microkinetic simulations to elucidate pore-type-dependent reaction networks for ketene-to-light olefin conversion. Our microkinetic results reveal that ketene conversion within MOR follows an autocatalytic process initiated by the Brønsted acid site, involving the generation and subsequent catalysis of reactive intermediates. Time-dependent dynamic evolution simulation shows that within the 12-membered-ring (12MR) pore, a thermodynamically stable five-membered-ring carbocation (FMR-CH3+) self-evolves and acts as the active center to convert CH2CO to multihydrocarbons. Instead, in the 8-membered-ring side pocket (8MR), direct CH3+ formation occurs via acetyl carbocation (CH3CO+) decarbonylation, inducing CH2CO conversion with exclusive ethylene selectivity. The distinct reaction mechanisms and product selectivities are attributed to the thermodynamic and kinetic constraints of cyclic/long-chain intermediate formation imposed by the smaller 8MR pore. Despite its higher free energy barrier, 8MR is identified as the key active site for light olefin formation due to its lower dependence on ketene pressure. We also highlight the critical factors influencing both the selectivity and activity of light olefin formation, offering valuable insights for the optimization of MOR catalysts. This study provides a quantitative mechanistic understanding of ketene conversion, emphasizing the role of pore structure in shaping catalytic activity and product selectivity, which may facilitate the design of efficient zeolite-based catalysts.
Collapse
Affiliation(s)
- Danfeng Xiong
- State Key Laboratory for Green Chemistry Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuangzhuang Lai
- State Key Laboratory for Green Chemistry Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| | - Jianfu Chen
- State Key Laboratory for Green Chemistry Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| | - Haiyang Yuan
- State Key Laboratory for Green Chemistry Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haifeng Wang
- State Key Laboratory for Green Chemistry Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Guo Z, Chen Q, Liu J, Yang B. Discovery of ketene/acetyl as a potential receptor for hydrogen-transfer reactions in zeolites. Nat Commun 2025; 16:1152. [PMID: 39880814 PMCID: PMC11779830 DOI: 10.1038/s41467-024-55514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
Hydrogen-transfer is the primary process responsible for elevating the degree of unsaturation of intermediates in zeolite-catalyzed methanol-to-hydrocarbon reactions, with olefins serving as the typical receptor and alkanes being produced as the by-product. Intriguingly, the introduction of CO was shown to suppress the selectivity of alkanes and enhance the production of aromatics, yet microscopic understanding of this phenomenon remains elusive. Here, based on ab initio molecular dynamics simulations and free energy sampling methods, we discover a non-olefin-induced hydrogen-transfer reaction in the presence of CO, with ketene/acetyl emerging as a more suitable hydrogen-transfer receptor than olefins. This predominant route enhances the degree of unsaturation of olefins without generating additional alkanes, and the produced dienes and acetaldehyde could further contribute to the formation of aromatics. Moreover, we construct a general mechanism applicable to a series of CO-coupled aromatics synthesis reactions, offering distinctive insights and strategies for the optimization of efficiency.
Collapse
Affiliation(s)
- Zhichao Guo
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China
| | - Qingteng Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China.
| |
Collapse
|
3
|
Zhang L, Feng J, Wang R, Wu L, Song X, Jin X, Tan X, Jia S, Ma X, Jing L, Zhu Q, Kang X, Zhang J, Sun X, Han B. Switching CO-to-Acetate Electroreduction on Cu Atomic Ensembles. J Am Chem Soc 2025; 147:713-724. [PMID: 39688936 PMCID: PMC11726573 DOI: 10.1021/jacs.4c13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
The electrocatalytic reaction pathway is highly dependent on the intrinsic structure of the catalyst. CO2/CO electroreduction has recently emerged as a potential approach for obtaining C2+ products, but it is challenging to achieve high selectivity for a single C2+ product. Herein, we develop a Cu atomic ensemble that satisfies the appropriate site distance and coordination environment required for electrocatalytic CO-to-acetate conversion, which shows outstanding overall performance with an acetate Faradaic efficiency of 70.2% with a partial current density of 225 mA cm-2 and a formation rate of 2.1 mmol h-1 cm-2. Moreover, a single-pass CO conversion rate of 91% and remarkable stability can be also obtained. Detailed experimental and theoretical investigations confirm the significant advantages of the Cu atomic ensembles in optimizing C-C coupling, stabilizing key ketene intermediate (*CCO), and inhibiting the *HOCCOH intermediate, which can switch the CO reduction pathway from the ethanol/ethylene on the conventional metallic Cu site to the acetate on the Cu atomic ensembles.
Collapse
Affiliation(s)
- Libing Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Jiaqi Feng
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Ruhan Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Limin Wu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Xinning Song
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Xiangyuan Jin
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Xingxing Tan
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shunhan Jia
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Xiaodong Ma
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lihong Jing
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qinggong Zhu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Xinchen Kang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Jianling Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Xiaofu Sun
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid
and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Bai B, Ye Y, Jiao F, Xiao J, Pan Y, Cai Z, Chen M, Pan X, Bao X. Surface Structure Dependent Activation of Hydrogen over Metal Oxides during Syngas Conversion. J Am Chem Soc 2024; 146:34909-34915. [PMID: 39620729 DOI: 10.1021/jacs.4c14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Despite the extensive studies on the adsorption and activation of hydrogen over metal oxides, it remains a challenge to investigate the structure-dependent activation of hydrogen and its selectivity mechanism in hydrogenation reactions. Herein we take spinel and solid solution MnGaOx with a similar bulk chemical composition and study the hydrogen activation mechanism and reactivity in syngas conversion. The results show that MnGaOx-Solid Solution (MnGaOx-SS) is a typical Mn-doped hexagonal close-packed (HCP) Ga2O3 with a Ga-rich surface. Upon exposure to hydrogen, Ga-H and O-H species are simultaneously generated. Ga-H species are highly active but unselective in CO activation, forming CHxO, and ethylene hydrogenation, forming ethane. In contrast, MnGaOx-Spinel is a face-centered-cubic (FCC) spinel phase featuring a Mn-rich surface, thus effectively suppressing the formation of Ga-H species. Interestingly, only part of the O-H species are active for CO activation while the O-H species are inert for olefin hydrogenation over MnGaOx-Spinel. Therefore, MnGaOx-Spinel exhibits a higher activity and higher light-olefin selectivity than MnGaOx-SS in combination with SAPO-18 during syngas conversion. These fundamental understandings are essential to guide the design and further optimization of metal oxide catalysts for selectivity control in hydrogenations.
Collapse
Affiliation(s)
- Bing Bai
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihan Ye
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Jiao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Pan
- University of Science and Technology of China, Hefei, 230026, China
| | - Zehua Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Qiao Y, Xiao Y, Zhang X, Yu W, Li J, Xu L, Zhu X, Zheng A, Li X. Unlocking Enhanced Butadiene Selectivity: The Crucial Role of Zeolite Channel Confinement in the Selective Decarbonylation of γ-Valerolactone. CHEMSUSCHEM 2024; 17:e202400417. [PMID: 38656661 DOI: 10.1002/cssc.202400417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Herein, we report a highly selective production route for butadiene from γ-valerolactone over zeolite catalysts. The catalytic performance of eight zeolites with different framework topologies were compared, revealing that zeolites with narrower 10-membered ring channels exhibit enhanced selectivity of butadiene. Specifically, ZSM-35 and ZSM-22, featuring the narrowest 10-membered ring channels, demonstrate the highest butadiene selectivity to 61 % and 59 %, respectively. Notably, surface passivation of ZSM-35 leads to a remarkable increase in butadiene selectivity to 82 %, maintaining a 99 % conversion. Additionally, we propose a reaction network and identify cyclopentenone as a key intermediate in the transformation of γ-valerolactone to butadiene. Both experimental and theoretical results conclude that confinement effect of 10-membered ring channels improves the selectivity of butadiene.
Collapse
Affiliation(s)
- Yukai Qiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xinbao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Weiwei Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junjie Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Longya Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiangxue Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiujie Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
6
|
Chen W, Liu Z, Yi X, Zheng A. Confinement-Driven Dimethyl Ether Carbonylation in Mordenite Zeolite as an Ultramicroscopic Reactor. Acc Chem Res 2024; 57:2804-2815. [PMID: 39189337 DOI: 10.1021/acs.accounts.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
ConspectusThe conversion of C1 molecules to methyl acetate through the carbonylation of dimethyl ether in mordenite zeolite is an appealing reaction and a crucial step in the industrial coal-to-ethanol process. Mordenite zeolite has large 12-membered-ring (12MR) channels (7.0 × 6.5 Å2) and small 8MR channels (5.7 × 2.6 Å2) connected by a side pocket (4.8 × 3.4 Å2), and this unique pore architecture supplies its high catalytic activity to the key step of carbonylation. However, the reaction mechanism of carbonylation in mordenite zeolite is not thoroughly established in that it is able to explain all experimental phenomena and improve its industrial applications, and the classical potential energy surface exerted by static density function theory calculations cannot reflect the reaction kinetics under realistic conditions because the diffusion kinetics of bulk DME (kinetic dimeter: 4.5 Å) and methyl acetate (MA, kinetic dimeter: 5.5 Å) were not well considered and their restricted diffusion in the narrow side pocket and 8MR channels may greatly alter the integrated kinetics of DME carbonylation in mordenite zeolite. Moreover, the precise illustration of the dynamic behaviors of the ketene intermediate and its derivatives (surface acetate and acylium ion) confined within various voids in mordenite has not been effectively portrayed.Advanced ab initio molecular dynamics (AIMD) simulations with or without the acceleration of enhanced sampling methods provide tremendous opportunities for operando modeling of both reaction and diffusion processes and further identify the geometrical structure and chemical properties of the reactants, intermediates, and products in the different confined voids of mordenite under realistic reaction conditions, which enables high consistency between computations and experiments.In this Account, the carbonylation process in mordenite is comprehensively described by the results of decades of continuous research and newly acquired knowledge from both multiscale simulations and in-(ex-)situ spectroscopic experiments. Three primary steps (DME demethylation to surface methoxy species (SMS), carbon-carbon bond coupling between SMS and CO to acetyl species, and methyl acetate formation by acetyl species and methanol/DME) have been respectively studied with a careful consideration of different molecular factors (reactant distribution, concentration, and attack mode). By utilizing the free-energy surface of diffusion and reaction obtained from AIMD simulations, a comprehensive reaction/diffusion kinetic model was formulated for the first time, illustrating the entire zeolite catalytic process. In this context, a comprehensive and informative analysis of the reaction kinetics of carbonylation in mordenite, including the function of the 12MR channels, 8MR channels, and side pockets in the adsorption, diffusion, and reaction of DME carbonylation, was performed. The different channels of mordenite play different roles in all ordered reaction steps, illustrating a highly organized ultramicroscopic reactor that is encompassed.
Collapse
Affiliation(s)
- Wei Chen
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, Zwijnaarde 9052, Belgium
| | - Zhiqiang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Anmin Zheng
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
7
|
Wang P, Jacob P, Wang ZM, Fowles J, O'Shea DF, Wagner J, Kumagai K. Conditions Leading to Ketene Formation in Vaping Devices and Implications for Public Health. Chem Res Toxicol 2024; 37:1415-1427. [PMID: 39078936 PMCID: PMC11423956 DOI: 10.1021/acs.chemrestox.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The outbreak of e-cigarette or vaping use-associated lung injury (EVALI) in the United States in 2019 led to a total of 2807 hospitalizations with 68 deaths. While the exact causes of this vaping-related lung illness are still being debated, laboratory analyses of products from victims of EVALI have shown that vitamin E acetate (VEA), an additive in some tetrahydrocannabinol (THC)-containing products, is strongly linked to the EVALI outbreak. Because of its similar appearance and viscosity to pure THC oil, VEA was used as a diluent agent in cannabis oils in illicit markets. A potential mechanism for EVALI may involve VEA's thermal decomposition product, ketene, a highly poisonous gas, being generated under vaping conditions. In this study, a novel approach was developed to evaluate ketene production from VEA vaping under measurable temperature conditions in real-world devices. Ketene in generated aerosols was captured by two different chemical agents and analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). The LC-MS/MS method takes advantage of the high sensitivity and specificity of tandem mass spectrometry and appears to be more suitable than GC-MS for the analysis of large batches of samples. Our results confirmed the formation of ketene when VEA was vaped. The production of ketene increased with repeat puffs and showed a correlation to temperatures (200 to 500 °C) measured within vaping devices. Device battery power strength, which affects the heating temperature, plays an important role in ketene formation. In addition to ketene, the organic oxidant duroquinone was also obtained as another thermal degradation product of VEA. Ketene was not detected when vitamin E was vaped under the same conditions, confirming the importance of the acetate group for its generation.
Collapse
Affiliation(s)
- Ping Wang
- Environmental Health Laboratory, Center for Laboratory Science, California Department of Public Health, Richmond, California 94804, United States
| | - Peyton Jacob
- Department of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Zhong-Min Wang
- Environmental Health Laboratory, Center for Laboratory Science, California Department of Public Health, Richmond, California 94804, United States
| | - Jefferson Fowles
- Environmental Investigation Branch, California Department of Public Health, Richmond, California 94804, United States
| | - Donal F O'Shea
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Jeff Wagner
- Environmental Health Laboratory, Center for Laboratory Science, California Department of Public Health, Richmond, California 94804, United States
| | - Kazukiyo Kumagai
- Environmental Health Laboratory, Center for Laboratory Science, California Department of Public Health, Richmond, California 94804, United States
| |
Collapse
|
8
|
Liu W, Wang Y, Bu L, Chu K, Huang Y, Guo N, Qu L, Sang J, Su X, Zhang X, Li Y. Preparation of Fe-HMOR with a Preferential Iron Location in the 12-MR Channels for Dimethyl Ether Carbonylation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2417. [PMID: 38793483 PMCID: PMC11123140 DOI: 10.3390/ma17102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
As the Brønsted acid sites in the 8-membered ring (8-MR) of mordenite (MOR) are reported to be the active center for dimethyl ether (DME) carbonylation reaction, it is of great importance to selectively increase the Brønsted acid amount in the 8-MR. Herein, a series of Fe-HMOR was prepared through one-pot hydrothermal synthesis by adding the EDTA-Fe complex into the gel. By combining XRD, FTIR, UV-Vis, Raman and XPS, it was found that the Fe atoms selectively substituted for the Al atoms in the 12-MR channels because of the large size of the EDTA-Fe complex. The NH3-TPD and Py-IR results showed that with the increase in Fe addition from Fe/Si = 0 to 0.02, the Brønsted acid sites derived from Si-OH-Al in the 8-MR first increased and then decreased, with the maximum at Fe/Si = 0.01. The Fe-modified MOR with Fe/Si = 0.01 showed the highest activity in DME carbonylation, which was three times that of HMOR. The TG/DTG results indicated that the carbon deposition and heavy coke formation in the spent Fe-HMOR catalysts were inhibited due to Fe addition. This work provides a practical way to design a catalyst with enhanced catalytic performance.
Collapse
Affiliation(s)
| | - Yaquan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (W.L.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fan D, Chen N, Han S, Li L, Wang N, Cui W, Wang Q, Tian P, Liu Z. H 2-Promoted Benign Coke Strategy for Dimethyl Ether Carbonylation with Long-Term Stability and High Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18745-18753. [PMID: 38573811 DOI: 10.1021/acsami.3c18170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Zeolite-catalyzed dimethyl ether (DME) carbonylation provides a novel route to producing methyl acetate (MeOAc). Mordenite (MOR) has drawn significant interest because of its remarkable MeOAc selectivity in DME carbonylation, albeit with limited catalytic stability. Herein, novel MOR-based DME carbonylation catalysts, distinguished by long-term stability and high activity were successfully developed, based on an H2-promoted benign coke strategy. Both the H2 cofeeds and the presence of metal species with hydrogenation capability are demonstrated to be crucial for the regulation of coke depositions. The coke deposits can potentially cover the acid sites in the 12-MR main channels, thereby mitigating the occurrence of undesirable methanol-to-hydrocarbon side reactions. Meanwhile, the elimination of ultralarge coke species under the assistance of H2 and Cu species could ensure smooth mass transfer within the catalyst, contributing to its remarkable catalytic performance. The most highlighted DME carbonylation performance was achieved on coke-mediated CuZn-HMOR with a high MeOAc yield of 0.4-0.5 g·gcat-1·h-1 for over 520 h (over 50× enhancement versus HMOR), exhibiting promising industrial application potential. The current strategy is expected to inspire further research into zeolite-catalyzed reactions, which could be potentially improved by the presence of benign coke.
Collapse
Affiliation(s)
- Dong Fan
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Chen
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Songyue Han
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyun Li
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Wang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenhao Cui
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Quanyi Wang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peng Tian
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
10
|
Zhou H, Gong X, Abou-Hamad E, Ye Y, Zhang X, Ma P, Gascon J, Chowdhury AD. Tracking the Impact of Koch-Carbonylated Organics During the Zeolite ZSM-5 Catalyzed Methanol-to-Hydrocarbons Process. Angew Chem Int Ed Engl 2024; 63:e202318250. [PMID: 38253820 DOI: 10.1002/anie.202318250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM-5, the practical application of this process in a CO2 -neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM-5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch-carbonylation-led) direct and dual cycle mechanisms, which operate during the early and steady-state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid-state NMR spectroscopic-based investigations on the MTH process, involving co-feeding methanol and acetone (cf. a key Koch-carbonylated species), including selective isotope-labeling studies. Our iterative research approach revealed that (Koch-)carbonyl group selectively promotes the side-chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene-toluene-xylene) primarily.
Collapse
Affiliation(s)
- Hexun Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Edy Abou-Hamad
- Imaging and Characterization Department, KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Pandong Ma
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| |
Collapse
|
11
|
Cordero-Lanzac T, Capel Berdiell I, Airi A, Chung SH, Mancuso JL, Redekop EA, Fabris C, Figueroa-Quintero L, Navarro de Miguel JC, Narciso J, Ramos-Fernandez EV, Svelle S, Van Speybroeck V, Ruiz-Martínez J, Bordiga S, Olsbye U. Transitioning from Methanol to Olefins (MTO) toward a Tandem CO 2 Hydrogenation Process: On the Role and Fate of Heteroatoms (Mg, Si) in MAPO-18 Zeotypes. JACS AU 2024; 4:744-759. [PMID: 38425934 PMCID: PMC10900493 DOI: 10.1021/jacsau.3c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
The tandem CO2 hydrogenation to hydrocarbons over mixed metal oxide/zeolite catalysts (OXZEO) is an efficient way of producing value-added hydrocarbons (platform chemicals and fuels) directly from CO2via methanol intermediate in a single reactor. In this contribution, two MAPO-18 zeotypes (M = Mg, Si) were tested and their performance was compared under methanol-to-olefins (MTO) conditions (350 °C, PCH3OH = 0.04 bar, 6.5 gCH3OH h-1 g-1), methanol/CO/H2 cofeed conditions (350 °C, PCH3OH/PCO/PH2 = 1:7.3:21.7 bar, 2.5 gCH3OH h-1 g-1), and tandem CO2 hydrogenation-to-olefin conditions (350 °C, PCO2/PH2 = 7.5:22.5 bar, 1.4-12.0 gMAPO-18 h molCO2-1). In the latter case, the zeotypes were mixed with a fixed amount of ZnO:ZrO2 catalyst, well-known for the conversion of CO2/H2 to methanol. Focus was set on the methanol conversion activity, product selectivity, and performance stability with time-on-stream. In situ and ex situ Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), solid-state nuclear magnetic resonance (NMR), sorption experiments, and ab initio molecular dynamics (AIMD) calculations were performed to correlate material performance with material characteristics. The catalytic tests demonstrated the better performance of MgAPO-18 versus SAPO-18 at MTO conditions, the much superior performance of MgAPO-18 under methanol/CO/H2 cofeeds, and yet the increasingly similar performance of the two materials under tandem conditions upon increasing the zeotype-to-oxide ratio in the tandem catalyst bed. In situ FT-IR measurements coupled with AIMD calculations revealed differences in the MTO initiation mechanism between the two materials. SAPO-18 promoted initial CO2 formation, indicative of a formaldehyde-based decarboxylation mechanism, while CO and ketene were the main constituents of the initiation pool in MgAPO-18, suggesting a decarbonylation mechanism. Under tandem CO2 hydrogenation conditions, the presence of high water concentrations and low methanol partial pressure in the reaction medium led to lower, and increasingly similar, methanol turnover frequencies for the zeotypes. Despite both MAPO-18 zeotypes showing signs of activity loss upon storage due to the interaction of the sites with ambient humidity, they presented a remarkable stability after reaching steady state under tandem reaction conditions and after steaming and regeneration cycles at high temperatures. Water adsorption experiments at room temperature confirmed this observation. The faster activity loss observed in the Mg version is assigned to its harder Mg2+-ion character and the higher concentration of CHA defects in the AEI structure, identified by solid-state NMR and XRD. The low stability of a MgAPO-34 zeotype (CHA structure) upon storage corroborated the relationship between CHA defects and instability.
Collapse
Affiliation(s)
- Tomás Cordero-Lanzac
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Izar Capel Berdiell
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Alessia Airi
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Sang-Ho Chung
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jenna L. Mancuso
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Evgeniy A. Redekop
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Claudia Fabris
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Leidy Figueroa-Quintero
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Juan C. Navarro de Miguel
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Javier Narciso
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Enrique V. Ramos-Fernandez
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Stian Svelle
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | | | - Javier Ruiz-Martínez
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Silvia Bordiga
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Unni Olsbye
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
12
|
Azizova LR, Kulik TV, Palianytsia BB, Ilchenko MM, Telbiz GM, Balu AM, Tarnavskiy S, Luque R, Roldan A, Kartel MT. The Role of Surface Complexes in Ketene Formation from Fatty Acids via Pyrolysis over Silica: from Platform Molecules to Waste Biomass. J Am Chem Soc 2023; 145:26592-26610. [PMID: 38047620 PMCID: PMC10722514 DOI: 10.1021/jacs.3c06966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Fatty acids (FA) are the main constituents of lipids and oil crop waste, considered to be a promising 2G biomass that can be converted into ketenes via catalytic pyrolysis. Ketenes are appraised as promising synthons for the pharmaceutical, polymer, and chemical industries. Progress in the thermal conversion of short- and long-chain fatty acids into ketenes requires a deep understanding of their interaction mechanisms with the nanoscale oxide catalysts. In this work, the interactions of fatty acids with silica are investigated using a wide range of experimental and computational techniques (TPD MS, DFT, FTIR, in situ IR, equilibrium adsorption, and thermogravimetry). The adsorption isotherms of linear and branched fatty acids C1-C6 on the silica surface from aqueous solution have been obtained. The relative quantities of different types of surface complexes, as well as kinetic parameters of their decomposition, were calculated. The formation of surface complexes with a coordination bond between the carbonyl oxygens and silicon atoms in the surface-active center, which becomes pentacoordinate, was confirmed by DFT calculations, in good agreement with the IR feature at ∼1680 cm 1. Interestingly, ketenes release relate to these complexes' decomposition as confirmed by the thermal evolution of the absorption band (1680 cm-1) synchronously with the TPD peak of the ketene molecular ion. The established regularities of the ketenezation are also observed for the silica-induced pyrolysis of glyceryl trimyristate and real waste, rapeseed meals.
Collapse
Affiliation(s)
- Liana R. Azizova
- School
of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, U.K.
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
| | - Tetiana V. Kulik
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Borys B. Palianytsia
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
- Departamento
de Química Orgánica, Universidad
de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A,
Km 396, Cordoba E14014, Spain
| | - Mykola M. Ilchenko
- Institute
of Molecular Biology and Genetics, National Academy of Science of
Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - German M. Telbiz
- National
Academy of Science of Ukraine, L. V. Pisarzhevsky
Institute of Physical Chemistry, Nauky Av. 31, Kyiv 03039, Ukraine
| | - Alina M. Balu
- Departamento
de Química Orgánica, Universidad
de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A,
Km 396, Cordoba E14014, Spain
| | - Sergiy Tarnavskiy
- Institute
of Molecular Biology and Genetics, National Academy of Science of
Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - Rafael Luque
- Universitá
degli studi Mediterranea di Reggio Calabria (UNIRC), DICEAM, Via Zehender
(giá via Graziella), Loc. Feo di Vito, I89122 Reggio Calabria, Italy
- Universidad
ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador
| | - Alberto Roldan
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Mykola T. Kartel
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
| |
Collapse
|
13
|
Van Speybroeck V, Bocus M, Cnudde P, Vanduyfhuys L. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. ACS Catal 2023; 13:11455-11493. [PMID: 37671178 PMCID: PMC10476167 DOI: 10.1021/acscatal.3c01945] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Indexed: 09/07/2023]
Abstract
Within this Perspective, we critically reflect on the role of first-principles molecular dynamics (MD) simulations in unraveling the catalytic function within zeolites under operating conditions. First-principles MD simulations refer to methods where the dynamics of the nuclei is followed in time by integrating the Newtonian equations of motion on a potential energy surface that is determined by solving the quantum-mechanical many-body problem for the electrons. Catalytic solids used in industrial applications show an intriguing high degree of complexity, with phenomena taking place at a broad range of length and time scales. Additionally, the state and function of a catalyst critically depend on the operating conditions, such as temperature, moisture, presence of water, etc. Herein we show by means of a series of exemplary cases how first-principles MD simulations are instrumental to unravel the catalyst complexity at the molecular scale. Examples show how the nature of reactive species at higher catalytic temperatures may drastically change compared to species at lower temperatures and how the nature of active sites may dynamically change upon exposure to water. To simulate rare events, first-principles MD simulations need to be used in combination with enhanced sampling techniques to efficiently sample low-probability regions of phase space. Using these techniques, it is shown how competitive pathways at operating conditions can be discovered and how broad transition state regions can be explored. Interestingly, such simulations can also be used to study hindered diffusion under operating conditions. The cases shown clearly illustrate how first-principles MD simulations reveal insights into the catalytic function at operating conditions, which could not be discovered using static or local approaches where only a few points are considered on the potential energy surface (PES). Despite these advantages, some major hurdles still exist to fully integrate first-principles MD methods in a standard computational catalytic workflow or to use the output of MD simulations as input for multiple length/time scale methods that aim to bridge to the reactor scale. First of all, methods are needed that allow us to evaluate the interatomic forces with quantum-mechanical accuracy, albeit at a much lower computational cost compared to currently used density functional theory (DFT) methods. The use of DFT limits the currently attainable length/time scales to hundreds of picoseconds and a few nanometers, which are much smaller than realistic catalyst particle dimensions and time scales encountered in the catalysis process. One solution could be to construct machine learning potentials (MLPs), where a numerical potential is derived from underlying quantum-mechanical data, which could be used in subsequent MD simulations. As such, much longer length and time scales could be reached; however, quite some research is still necessary to construct MLPs for the complex systems encountered in industrially used catalysts. Second, most currently used enhanced sampling techniques in catalysis make use of collective variables (CVs), which are mostly determined based on chemical intuition. To explore complex reactive networks with MD simulations, methods are needed that allow the automatic discovery of CVs or methods that do not rely on a priori definition of CVs. Recently, various data-driven methods have been proposed, which could be explored for complex catalytic systems. Lastly, first-principles MD methods are currently mostly used to investigate local reactive events. We hope that with the rise of data-driven methods and more efficient methods to describe the PES, first-principles MD methods will in the future also be able to describe longer length/time scale processes in catalysis. This might lead to a consistent dynamic description of all steps-diffusion, adsorption, and reaction-as they take place at the catalyst particle level.
Collapse
Affiliation(s)
| | - Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
14
|
Ma Y, Hu J, Fan K, Chen W, Han S, Wu Q, Ma Y, Zheng A, Kunkes E, De Baerdemaeker T, Parvulescu AN, Bottke N, Yokoi T, De Vos DE, Meng X, Xiao FS. Design of an Organic Template for Synthesizing ITR Zeolites under Ge-Free Conditions. J Am Chem Soc 2023; 145:17284-17291. [PMID: 37489934 DOI: 10.1021/jacs.3c04652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Germanosilicate zeolites with various structures have been extensively synthesized, but the syntheses of corresponding zeolite structures in the absence of germanium species remain a challenge. One such example is an ITR zeolite structure, which is a twin of the ITH zeolite structure. Through the modification of a classic organic template for synthesizing ITH zeolites and thus designing a new organic template with high compatibility to ITR zeolite assisted by theoretical simulation, we, for the first time, show the Ge-free synthesis of an ITR structure including pure silica, aluminosilicate, and borosilicate ITR zeolites. These materials have high crystallinity, corresponding to an ITR content of more than 95%. In the methanol-to-propylene (MTP) reaction, the obtained aluminosilicate ITR zeolite exhibits excellent propylene selectivity and a long lifetime compared with conventional aluminosilicate ZSM-5 zeolite. The strategy for the design of organic templates might offer a new opportunity for rational syntheses of novel zeolites and, thus, the development of highly efficient zeolite catalysts in the future.
Collapse
Affiliation(s)
- Ye Ma
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Junyi Hu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Kai Fan
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shichao Han
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Qinming Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | - Toshiyuki Yokoi
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23, Leuven 3001, Belgium
| | - Xiangju Meng
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Feng-Shou Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Pan Z, Puente-Urbina A, Batool SR, Bodi A, Wu X, Zhang Z, van Bokhoven JA, Hemberger P. Tuning the zeolite acidity enables selectivity control by suppressing ketene formation in lignin catalytic pyrolysis. Nat Commun 2023; 14:4512. [PMID: 37500623 PMCID: PMC10374901 DOI: 10.1038/s41467-023-40179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Unveiling catalytic mechanisms at a molecular level aids rational catalyst design and selectivity control for process optimization. In this study, we find that the Brønsted acid site density of the zeolite catalyst efficiently controls the guaiacol catalytic pyrolysis mechanism. Guaiacol demethylation to catechol initiates the reaction, as evidenced by the detected methyl radicals. The mechanism branches to form either fulvenone (c-C5H4 = C = O), a reactive ketene intermediate, by catechol dehydration, or phenol by acid-catalyzed dehydroxylation. At high Brønsted acid site density, fulvenone formation is inhibited due to surface coordination configuration of its precursor, catechol. By quantifying reactive intermediates and products utilizing operando photoelectron photoion coincidence spectroscopy, we find evidence that ketene suppression is responsible for the fivefold phenol selectivity increase. Complementary fulvenone reaction pathway calculations, along with 29Si NMR-MAS spectroscopy results corroborate the mechanism. The proposed, flexible operando approach is applicable to a broad variety of heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Zeyou Pan
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Allen Puente-Urbina
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Syeda Rabia Batool
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Andras Bodi
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Xiangkun Wu
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Zihao Zhang
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland.
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Patrick Hemberger
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland.
| |
Collapse
|
16
|
Wu X, Wei Y, Liu Z. Dynamic Catalytic Mechanism of the Methanol-to-Hydrocarbons Reaction over Zeolites. Acc Chem Res 2023. [PMID: 37402692 DOI: 10.1021/acs.accounts.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
ConspectusThe methanol-to-hydrocarbons (MTH) process has provided a new route to obtaining basic chemicals without relying on an oil resource. Acidity and shape selectivity endow the zeolite with a decisive role in MTH catalysis. However, the inherent reaction characteristics of the MTH reaction over zeolites, such as the complexity of catalytic reaction kinetics, the diversity of catalytic reaction modes, and even the limitations of catalytic and diffusive decoupling, have all confused people with respect to obtaining a comprehensive mechanistic understanding. By examining the zeolite-catalyzed MTH reaction from the perspective of chemical bonding, one would realize that this reaction reflects the dynamic assembly process of C-C bonds from C1 components to multicarbon products. The key to understanding the MTH reaction lies in the mechanism by which C-C bonds are formed and rearranged in the confined microenvironment of the channel or cage structures of zeolite catalysts to achieve shape-selective production.The applications of advanced in situ spectroscopy as well as computational chemistry provide tremendous opportunities for capturing and identifying the details of the structure and properties of reactants, intermediates, and products in the confined reaction space of zeolite channels or cages, observing the real-time dynamic evolution of the catalytic surface, and modeling the elementary reaction steps at the molecular and atomic levels.In this Account, the dynamic catalytic mechanism of the zeolite-catalyzed MTH reaction will be outlined based on decades of continuous research and in-depth understanding. The combination of advanced in situ spectroscopy and theoretical methods allowed us to observe and simulate the formation, growth, and aging process on the working catalyst surface and thus map the dynamical evolution of active sites from a Brønsted acid site (BAS) to an organic-inorganic hybrid supramolecule (OIHS) in the MTH reaction. Moreover, the ever-evolving dynamic succession of the OIHS from surface methoxy species (SMS) to active ion-pair complexes (AIPC) to inert complexes (IC) guided the dynamic autocatalytic process from initiation to sustaining and then to termination, resulting in a complex interlaced hypercycle reaction network. The concept of dynamic catalysis will provide deep insight into the complex catalytic mechanisms as well as the structure-activity relationships in MTH chemistry. More importantly, we are now getting closer to the nature of zeolite catalysis beyond the traditional view of BAS catalysis.
Collapse
Affiliation(s)
- Xinqiang Wu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Yingxu Wei
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Zhao J, Qian W, Ma H, Ying W, Yuan P, Zhang H. Theoretical Study for Adsorption-Diffusion on H-MOR and Pyridine Pre-adsorbed H-MOR of Dimethyl Ether Carbonylation. ACS OMEGA 2023; 8:22067-22076. [PMID: 37360492 PMCID: PMC10285922 DOI: 10.1021/acsomega.3c02127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
For dimethyl ether (DME) carbonylation, pyridine pre-adsorbed hydrogen mordenite (H-MOR) is beneficial to prolonging the catalyst life. The adsorption and diffusion behaviors on periodic models H-AlMOR and H-AlMOR-Py were simulated. The simulation was based on Monte Carlo and molecular dynamics. The following conclusions were drawn from the simulation results. The adsorption stability of CO in 8-MR is increased, and the adsorption density of CO in 8-MR is more concentrated on H-AlMOR-Py. 8-MR is the main active site for DME carbonylation, so the introduction of pyridine would be beneficial for the main reaction. The adsorption distributions of methyl acetate (MA) (in 12-MR) and H2O on H-AlMOR-Py are significantly decreased. It means the product MA and the byproduct H2O are more easily desorbed on H-AlMOR-Py. For the mixed feed of DME carbonylation, the feed ratio (PCO/PDME) must reach 50:1 on H-AlMOR so that the reaction molar ratio can reach the theoretical value (NCO/NDME ≈ 1:1), while the feed ratio on H-AlMOR-Py is only up to 10:1. Thus, the feed ratio can be adjusted, and raw materials can reduce consumption. In conclusion, H-AlMOR-Py can improve the adsorption equilibrium of reactants CO and DME and increase the concentration of CO in 8-MR.
Collapse
|
18
|
Lyu A, Wang Y, Cui H. Enhanced Chemiluminescence under the Nanoconfinement of Covalent-Organic Frameworks and Its Application in Sensitive Detection of Cancer Biomarkers. Anal Chem 2023; 95:7914-7923. [PMID: 37167195 DOI: 10.1021/acs.analchem.3c00372] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chemiluminescence (CL) with intensive emission has been pursued for decades. It is still challenging to find a new mechanism to enhance CL. In this work, confinement-enhanced CL was developed for the first time by the coembedding of N-(aminobutyl)-N-(ethylisoluminol) (ABEI) and Co2+ into gold nanoparticle-modified covalent-organic frameworks (COFs). For the consideration of improving the hydrophilicity of COFs and facilitating subsequent biological modification, gold nanoparticles were first reduced on the COF surface (Au-COF) in situ without other reducing reagents. By virtue of the abundant imine bond and π backbones, ABEI and Co2+ were embedded in Au-COF synergistically through π-π stacking and coordination. The confinement of ABEI and Co2+ into Au-COF brought an over 20-fold enhancement of CL intensity compared to that of adding them to a liquid phase, which benefitted from the three aspects of the confinement effect, including the molecular enrichment effect, the physical constraint effect, and the molecular preorganization effect. As proof of concept, a lipid-protein dual-recognition sandwich strategy based on this CL-functionalized COF was developed for the detection of breast cancer cell line-derived extracellular vesicles (EVs) with four orders of magnitude improvement in the detection limit compared to ELISA. The successful distinction of human epidermal growth factor receptor 2 (HER2)-positive patients from HER2-negative patients indicated the great application potential of the proposed bioassay in HER2-positive breast cancer diagnosis. This work proposed a novel enhancement mechanism for CL based on crystalline porous materials, which provides a new perspective for the development of CL-functionalized materials for biosensors and bioassays.
Collapse
Affiliation(s)
- Aihua Lyu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yisha Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
19
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
20
|
Gong X, Ye Y, Chowdhury AD. Evaluating the Role of Descriptor- and Spectator-Type Reaction Intermediates During the Early Phases of Zeolite Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| |
Collapse
|
21
|
Ji Y, Liu Z, Zhao Z, Gao P, Bao X, Chen K, Hou G. Untangling Framework Confinements: A Dynamical Study on Bulky Aromatic Molecules in MFI Zeolites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Ji
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhengmao Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| |
Collapse
|
22
|
Chen W, Tarach KA, Yi X, Liu Z, Tang X, Góra-Marek K, Zheng A. Charge-separation driven mechanism via acylium ion intermediate migration during catalytic carbonylation in mordenite zeolite. Nat Commun 2022; 13:7106. [DOI: 10.1038/s41467-022-34708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
AbstractBy employing ab initio molecular dynamic simulations, solid-state NMR spectroscopy, and two-dimensional correlation analysis of rapid scan Fourier transform infrared spectroscopy data, a new pathway is proposed for the formation of methyl acetate (MA) via the acylium ion (i.e.,CH3 − C ≡ O+) in 12-membered ring (MR) channel of mordenite by an integrated reaction/diffusion kinetics model, and this route is kinetically and thermodynamically more favorable than the traditional viewpoint in 8MR channel. From perspective of the complete catalytic cycle, the separation of these two reaction zones, i.e., the C-C bond coupling in 8MR channel and MA formation in 12MR channel, effectively avoids aggregation of highly active acetyl species or ketene, thereby reducing undesired carbon deposit production. The synergistic effect of different channels appears to account for the high carbonylation activity in mordenite that has thus far not been fully explained, and this paradigm may rationalize the observed catalytic activity of other reactions.
Collapse
|
23
|
Kolganov AA, Gabrienko AA, Stepanov AG. Reaction of Methane with Benzene and CO on Cu-Modified ZSM-5 Zeolite Investigated by 13C MAS NMR Spectroscopy. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Wu X, Zhang Z, Pan Z, Zhou X, Bodi A, Hemberger P. Ketenes in the Induction of the Methanol-to-Olefins Process. Angew Chem Int Ed Engl 2022; 61:e202207777. [PMID: 35929758 PMCID: PMC9804150 DOI: 10.1002/anie.202207777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 01/05/2023]
Abstract
Ketene (CH2 =C=O) has been postulated as a key intermediate for the first olefin production in the zeolite-catalyzed chemistry of methanol-to-olefins (MTO) and syngas-to-olefins (STO) processes. The reaction mechanism remains elusive, because the short-lived ethenone ketene and its derivatives are difficult to detect, which is further complicated by the low expected ketene concentration. We report on the experimental detection of methylketene (CH3 -CH=C=O) formed by the methylation of ketene on HZSM-5 via operando synchrotron photoelectron photoion coincidence (PEPICO) spectroscopy. Ketene is produced in situ from methyl acetate. The observation of methylketene as the ethylene precursor evidences a computationally predicted ketene-to-ethylene route proceeding via a methylketene intermediate followed by decarbonylation.
Collapse
Affiliation(s)
- Xiangkun Wu
- Paul Scherrer Institute5232VilligenSwitzerland
| | - Zihao Zhang
- Paul Scherrer Institute5232VilligenSwitzerland
- National Centre of Competence in Research (NCCR) CatalysisPaul Scherrer Institute5232VilligenSwitzerland
| | - Zeyou Pan
- Paul Scherrer Institute5232VilligenSwitzerland
| | - Xiaoguo Zhou
- Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026China
| | - Andras Bodi
- Paul Scherrer Institute5232VilligenSwitzerland
- National Centre of Competence in Research (NCCR) CatalysisPaul Scherrer Institute5232VilligenSwitzerland
| | - Patrick Hemberger
- Paul Scherrer Institute5232VilligenSwitzerland
- National Centre of Competence in Research (NCCR) CatalysisPaul Scherrer Institute5232VilligenSwitzerland
| |
Collapse
|
25
|
Zhang Y, Gao P, Jiao F, Chen Y, Ding Y, Hou G, Pan X, Bao X. Chemistry of Ketene Transformation to Gasoline Catalyzed by H-SAPO-11. J Am Chem Soc 2022; 144:18251-18258. [PMID: 36191129 DOI: 10.1021/jacs.2c03478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although ketene has been proposed to be an active intermediate in a number of reactions including OXZEO (metal oxide-zeolite)-catalyzed syngas conversion, dimethyl ether carbonylation, methanol to hydrocarbons, and CO2 hydrogenation, its chemistry and reaction pathway over zeolites are not well understood. Herein, we study the pathway of ketene transformation to gasoline range hydrocarbons over the molecular sieve H-SAPO-11 by kinetic analysis, in situ infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. It is demonstrated that butene is the reaction intermediate on the paths toward gasoline products. Ketene transforms to butene on the acid sites via either acetyl species following an acetic acid ketonization pathway or acetoacetyl species with keto-enol tautomerism following an acetoacetic acid decarboxylation pathway when in the presence of water. This study reveals experimentally for the first time insights into ketene chemistry in zeolite catalysis.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Pan Gao
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Feng Jiao
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Yuxiang Chen
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Yilun Ding
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| |
Collapse
|
26
|
Chernyak SA, Corda M, Dath JP, Ordomsky VV, Khodakov AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev 2022; 51:7994-8044. [PMID: 36043509 DOI: 10.1039/d1cs01036k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.
Collapse
Affiliation(s)
- Sergei A Chernyak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Massimo Corda
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Jean-Pierre Dath
- Direction Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Vitaly V Ordomsky
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Andrei Y Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| |
Collapse
|
27
|
Gong X, Çağlayan M, Ye Y, Liu K, Gascon J, Dutta Chowdhury A. First-Generation Organic Reaction Intermediates in Zeolite Chemistry and Catalysis. Chem Rev 2022; 122:14275-14345. [PMID: 35947790 DOI: 10.1021/acs.chemrev.2c00076] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Zeolite chemistry and catalysis are expected to play a decisive role in the next decade(s) to build a more decentralized renewable feedstock-dependent sustainable society owing to the increased scrutiny over carbon emissions. Therefore, the lack of fundamental and mechanistic understanding of these processes is a critical "technical bottleneck" that must be eliminated to maximize economic value and minimize waste. We have identified, considering this objective, that the chemistry related to the first-generation reaction intermediates (i.e., carbocations, radicals, carbenes, ketenes, and carbanions) in zeolite chemistry and catalysis is highly underdeveloped or undervalued compared to other catalysis streams (e.g., homogeneous catalysis). This limitation can often be attributed to the technological restrictions to detect such "short-lived and highly reactive" intermediates at the interface (gas-solid/solid-liquid); however, the recent rise of sophisticated spectroscopic/analytical techniques (including under in situ/operando conditions) and modern data analysis methods collectively compete to unravel the impact of these organic intermediates. This comprehensive review summarizes the state-of-the-art first-generation organic reaction intermediates in zeolite chemistry and catalysis and evaluates their existing challenges and future prospects, to contribute significantly to the "circular carbon economy" initiatives.
Collapse
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Mustafa Çağlayan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | |
Collapse
|
28
|
Wu X, Zhang Z, Pan Z, Zhou X, Bodi A, Hemberger P. Ketenes in the Induction of the Methanol‐to‐Olefins Process. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiangkun Wu
- Paul Scherrer Institute: Paul Scherrer Institut PSI General Energy SWITZERLAND
| | - Zihao Zhang
- Paul Scherrer Institute: Paul Scherrer Institut PSI Photon Science SWITZERLAND
| | - Zeyou Pan
- Paul Scherrer Institute: Paul Scherrer Institut PSI Photon Science SWITZERLAND
| | - Xiaoguo Zhou
- University of Science and Technology of China Department of Chemical Physics CHINA
| | - Andras Bodi
- Paul Scherrer Institute: Paul Scherrer Institut PSI Photon Science SWITZERLAND
| | - Patrick Hemberger
- Paul Scherrer Institut Molecular Dynamics WSLA/028 5232 Villigen PSI SWITZERLAND
| |
Collapse
|
29
|
Liu R, Fan B, Zhi Y, Liu C, Xu S, Yu Z, Liu Z. Dynamic Evolution of Aluminum Coordination Environments in Mordenite Zeolite and Their Role in the Dimethyl Ether (DME) Carbonylation Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rongsheng Liu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Benhan Fan
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Yuchun Zhi
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Chong Liu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Shutao Xu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Zhengxi Yu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Zhongmin Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Science Dalian National Laboratory for Clean Energy Zhongshan Road #457 116023 Dalian CHINA
| |
Collapse
|
30
|
Shi Z, Bhan A. Methanol-to-olefins catalysis on window-cage type zeolites/zeotypes with syngas co-feeds: Understanding syngas-to-olefins chemistry. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Chen W, Yi X, Liu Z, Tang X, Zheng A. Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations. Chem Soc Rev 2022; 51:4337-4385. [PMID: 35536126 DOI: 10.1039/d1cs00966d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acid-catalyzed reactions inside zeolites are one type of broadly applied industrial reactions, where carbocations are the most common intermediates of these reaction processes, including methanol to olefins, alkene/aromatic alkylation, and hydrocarbon cracking/isomerization. The fundamental research on these acid-catalyzed reactions is focused on the stability, evolution, and lifetime of carbocations under the zeolite confinement effect, which greatly affects the efficiency, selectivity and deactivation of zeolite catalysts. Therefore, a profound understanding of the carbocations confined in zeolites is not only beneficial to explain the reaction mechanism but also drive the design of new zeolite catalysts with ideal acidity and cages/channels. In this review, we provide both an in-depth understanding of the stabilization of carbocations by the pore confinement effect and summary of the advanced characterization methods to capture carbocations in zeolites, including UV-vis spectroscopy, solid-state NMR, fluorescence microscopy, IR spectroscopy and Raman spectroscopy. Also, we clarify the relationship between the activity and stability of carbocations in zeolite-catalyzed reactions, and further highlight the role of carbocations in various hydrocarbon conversion reactions inside zeolites with diverse frameworks and varying acidic properties.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
32
|
Fan B, Zhang W, Gao P, Hou G, Liu R, Xu S, Wei Y, Liu Z. Quantitatively Mapping the Distribution of Intrinsic Acid Sites in Mordenite Zeolite by High-Field 23Na Solid-State Nuclear Magnetic Resonance. J Phys Chem Lett 2022; 13:5186-5194. [PMID: 35666100 DOI: 10.1021/acs.jpclett.2c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is of great significance to accurately quantify the Brønsted acid sites (BASs) at different positions of mordenite (MOR) zeolite. However, H-MOR obtained from Na-MOR can hardly avoid dealumination under hydrothermal conditions, which causes difficulty in the acid characterization. Herein, 23Na-27Al D-HMQC was performed combined with high-field 23Na MQ MAS NMR and DFT calculation, which provided an unambiguous attribution of the 23Na chemical shifts and further helped to improve the resolution of 27Al MAS NMR. By fitting the 23Na and 1H MAS NMR spectra of Na/H-MOR, the intrinsic BAS contents in different T-sites were measured by characterizing the location and content of sodium ions. These Na/H-MOR zeolites with various acid distributions were used for DME carbonylation and showed that the amount of BASs in the T3 site was proportional to the activity of carbonylation. This study provides a new method for investigating the intrinsic acid properties of zeolites.
Collapse
Affiliation(s)
- Benhan Fan
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenna Zhang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Rongsheng Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shutao Xu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yingxu Wei
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
33
|
Cao K, Fan D, Gao M, Fan B, Chen N, Wang L, Tian P, Liu Z. Recognizing the Important Role of Surface Barriers in MOR Zeolite Catalyzed DME Carbonylation Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kaipeng Cao
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Dong Fan
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Mingbin Gao
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Benhan Fan
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Nan Chen
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Linying Wang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Peng Tian
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
34
|
Lai Z, Sun N, Jin J, Chen J, Wang H, Hu P. Resolving the Intricate Mechanism and Selectivity of Syngas Conversion on Reduced ZnCr 2O x: A Quantitative Study from DFT and Microkinetic Simulations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhuangzhuang Lai
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Ningling Sun
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jiamin Jin
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jianfu Chen
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - P. Hu
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| |
Collapse
|