1
|
Smook LA, de Beer S. Molecular Design Strategies to Enhance the Electroresponse of Polyelectrolyte Brushes: Effects of Charge Fraction and Chain Length Dispersity. Macromolecules 2025; 58:1185-1195. [PMID: 39958485 PMCID: PMC11823628 DOI: 10.1021/acs.macromol.4c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
Polyelectrolyte brushes are functional surface coatings that react to external stimuli. The response of these brushes in electric fields is nearly immediate as the field acts directly on the charges in the polyion, while the response to bulk stimuli such as temperature, acidity, and ionic composition is intrinsically capped by transport limitations. However, the response of fully charged brushes is limited because large field strengths are required to achieve a response. This limits the application of these brushes to architectures such as small pores or nanojunctions because small biases can generate large field strengths over small distances. Here, we propose a design strategy that enhances the response and lowers the field strength required in these applications. Our coarse-grained simulations highlight two approaches to increase the electroresponse of polyelectrolyte brushes: dispersity in the chain length enhances the electroresponse and a reduction in the number of charged monomers does the same. With these approaches, we increase the relative brush height variation from only 28% to as much as 227% since in partially charged brushes, more chains need to respond to screen the imposed field and the longer chains in disperse brushes can reorganize over large distances. Additionally, we find that disperse brushes show a stratified response where short chains collapse first and long chains stretch first because this stratification minimizes the change in conformational energy. We envision that our insights will enable the application of electroresponsive polyelectrolyte brushes in larger architectures or in small architectures using smaller biases, which could enable a stimulus-responsive pore size modulation that could be used for filtration and molecular separations.
Collapse
Affiliation(s)
- Leon A. Smook
- Department of Molecules and
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules and
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
Hunter SJ, Csányi E, Tyler JJS, Newell MA, Farmer MAH, Ma C, Sanderson G, Leggett GJ, Johnson EC, Armes SP. Covalent Capture of Nanoparticle-Stabilized Oil Droplets via Acetal Chemistry Using a Hydrophilic Polymer Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26735-26741. [PMID: 39641918 DOI: 10.1021/acs.langmuir.4c03897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We report the capture of nanosized oil droplets using a hydrophilic aldehyde-functional polymer brush. The brush was obtained via aqueous ARGET ATRP of a cis-diol-functional methacrylic monomer from a planar silicon wafer. This precursor was then selectively oxidized using an aqueous solution of NaIO4 to introduce aldehyde groups. The oil droplets were prepared by using excess sterically stabilized diblock copolymer nanoparticles to prepare a relatively coarse squalane-in-water Pickering emulsion (mean droplet diameter = 20 μm). This precursor was then further processed via high-pressure microfluidization to produce ∼200 nm squalane droplets. We demonstrate that adsorption of these nanosized oil droplets involves acetal bond formation between the cis-diol groups located on the steric stabilizer chains and the aldehyde groups on the brush. This interaction occurs under relatively mild conditions and can be tuned by adjusting the solution pH. Hence this is a useful model system for understanding oil droplet interactions with soft surfaces.
Collapse
Affiliation(s)
- Saul J Hunter
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, U.K
| | - Evelin Csányi
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Joshua J S Tyler
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Mark A Newell
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Matthew A H Farmer
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Camery Ma
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - George Sanderson
- GEO Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K
| | - Graham J Leggett
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Edwin C Johnson
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
3
|
Zhao K, Li M, Geng H, Gao Z, Zhang X, Sekhar KPC, Zhang P, Cui J. Synthesis of Antifouling Poly(ethylene glycol) Brushes via "Grafting to" Approach for Improved Biodistribution. Biomacromolecules 2024; 25:6727-6736. [PMID: 39270004 DOI: 10.1021/acs.biomac.4c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Polyethylene glycol (PEG) modification of materials has been identified to mitigate the challenge of biofouling. However, the practical application of PEGylation has been hampered by a low PEGylation density on the material surface. Therefore, developing efficient strategies to promote the PEGylation density is crucial. In this study, PEG brushes (PBs) with various structures were synthesized and their physicochemical properties and biomedical applications were investigated. Compared to benzaldehyde (BA), o-phthalaldehyde (OPA) exhibited higher reactivity with amine groups, resulting in increased grafting density (as high as 96.3%) and improved antifouling properties of PEG brushes. Bottlebrushes fabricated by PEG-OPA and polylysine demonstrated a prolonged circulation time in blood and enhanced potential for magnetic resonance imaging of tumors. Furthermore, the rigidity of the backbone was found to be crucial for the antifouling properties of PEG brushes both in vitro and in vivo. These findings are significant and provide valuable insights into designing biomaterials with superior antifouling performance.
Collapse
Affiliation(s)
- Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaoman Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Kanaparedu P C Sekhar
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
4
|
Pavón C, Benetti EM, Lorandi F. Polymer Brushes on Nanoparticles for Controlling the Interaction with Protein-Rich Physiological Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11843-11857. [PMID: 38787578 DOI: 10.1021/acs.langmuir.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The interaction of nanoparticles (NPs) with biological environments triggers the formation of a protein corona (PC), which significantly influences their behavior in vivo. This review explores the evolving understanding of PC formation, focusing on the opportunity for decreasing or suppressing protein-NP interactions by macromolecular engineering of NP shells. The functionalization of NPs with a dense, hydrated polymer brush shell is a powerful strategy for imparting stealth properties in order to elude recognition by the immune system. While poly(ethylene glycol) (PEG) has been extensively used for this purpose, concerns regarding its stability and immunogenicity have prompted the exploration of alternative polymers. The stealth properties of brush shells can be enhanced by tailoring functionalities and structural parameters, including the molar mass, grafting density, and polymer topology. Determining correlations between these parameters and biopassivity has enabled us to obtain polymer-grafted NPs with high colloidal stability and prolonged circulation time in biological media.
Collapse
Affiliation(s)
- Carlos Pavón
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Murphy E, Zhang C, Bates CM, Hawker CJ. Chromatographic Separation: A Versatile Strategy to Prepare Discrete and Well-Defined Polymer Libraries. Acc Chem Res 2024; 57:1202-1213. [PMID: 38530881 PMCID: PMC11025024 DOI: 10.1021/acs.accounts.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
ConspectusThe preparation of discrete and well-defined polymers is an emerging strategy for emulating the remarkable precision achieved by macromolecular synthesis in nature. Although modern controlled polymerization techniques have unlocked access to a cornucopia of materials spanning a broad range of monomers, molecular weights, and architectures, the word "controlled" is not to be confused with "perfect". Indeed, even the highest-fidelity polymerization techniques─yielding molar mass dispersities in the vicinity of Đ = 1.05─unavoidably create a considerable degree of structural and/or compositional dispersity due to the statistical nature of chain growth. Such dispersity impacts many of the properties that researchers seek to control in the design of soft materials.The development of strategies to minimize or entirely eliminate dispersity and access molecularly precise polymers therefore remains a key contemporary challenge. While significant advances have been made in the realm of iterative synthetic methods that construct oligomers with an exact molecular weight, head-to-tail connectivity, and even stereochemistry via small-molecule organic chemistry, as the word "iterative" suggests, these techniques involve manually propagating monomers one reaction at a time, often with intervening protection and deprotection steps. As a result, these strategies are time-consuming, difficult to scale, and remain limited to lower molecular weights. The focus of this Account is on an alternative strategy that is more accessible to the general scientific community because of its simplicity, versatility, and affordability: chromatography. Researchers unfamiliar with the intricacies of synthesis may recall being exposed to chromatography in an undergraduate chemistry lab. This operationally simple, yet remarkably powerful, technique is most commonly encountered in the purification of small molecules through their selective (differential) adsorption to a column packed with a low-cost stationary phase, usually silica. Because the requisite equipment is readily available and the actual separation takes little time (on the order of 1 h), chromatography is used extensively in small-molecule chemistry throughout industry and academia alike. It is, therefore, perhaps surprising that similar types of chromatography are not more widely leveraged in the field of polymer science as well.Here, we discuss recent advances in using chromatography to control the structure and properties of polymeric materials. Emphasis is placed on the utility of an adsorption-based mechanism that separates polymers based on polarity and composition at tractable (gram) scales for materials science, in contrast to size exclusion, which is extremely common but typically analyzes very small quantities of a sample (∼1 mg) and is limited to separating by molar mass. Key concepts that are highlighted include (1) the separation of low-molecular-weight homopolymers into discrete oligomers (Đ = 1.0) with precise chain lengths and (2) the efficient fractionation of block copolymers into high-quality and widely varied libraries for accelerating materials discovery. In summary, the authors hope to convey the exciting possibilities in polymer science afforded by chromatography as a scalable, versatile, and even automated technique that unlocks new avenues of exploration into well-defined materials for a diverse assortment of researchers with different training and expertise.
Collapse
Affiliation(s)
- Elizabeth
A. Murphy
- Materials
Research Laboratory, Department of Chemistry & Biochemistry, Department of Chemical
Engineering, andMaterials Department, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Cheng Zhang
- Materials
Research Laboratory, Department of Chemistry & Biochemistry, Department of Chemical
Engineering, andMaterials Department, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
- Australian
Institute for Bioengineering and Nanotechnology and Centre for Advanced
Imaging University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher M. Bates
- Materials
Research Laboratory, Department of Chemistry & Biochemistry, Department of Chemical
Engineering, andMaterials Department, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Craig J. Hawker
- Materials
Research Laboratory, Department of Chemistry & Biochemistry, Department of Chemical
Engineering, andMaterials Department, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
6
|
Shimizu T, Whitfield R, Jones GR, Raji IO, Konkolewicz D, Truong NP, Anastasaki A. Controlling primary chain dispersity in network polymers: elucidating the effect of dispersity on degradation. Chem Sci 2023; 14:13419-13428. [PMID: 38033899 PMCID: PMC10685271 DOI: 10.1039/d3sc05203f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Although dispersity has been demonstrated to be instrumental in determining many polymer properties, current synthetic strategies predominantly focus on tailoring the dispersity of linear polymers. In contrast, controlling the primary chain dispersity in network polymers is much more challenging, in part due to the complex nature of the reactions, which has limited the exploration of properties and applications. Here, a one-step method to prepare networks with precisely tuned primary chain dispersity is presented. By using an acid-switchable chain transfer agent and a degradable crosslinker in PET-RAFT polymerization, the in situ crosslinking of the propagating polymer chains was achieved in a quantitative manner. The incorporation of a degradable crosslinker, not only enables the accurate quantification of the various primary chain dispersities, post-synthesis, but also allows the investigation and comparison of their respective degradation profiles. Notably, the highest dispersity networks resulted in a 40% increase in degradation time when compared to their lower dispersity analogues, demonstrating that primary chain dispersity has a substantial impact on the network degradation rate. Our experimental findings were further supported by simulations, which emphasized the importance of higher molecular weight polymer chains, found within the high dispersity materials, in extending the lifetime of the network. This methodology presents a new and promising avenue to precisely tune primary chain dispersity within networks and demonstrates that polymer dispersity is an important parameter to consider when designing degradable materials.
Collapse
Affiliation(s)
- Takanori Shimizu
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
- Science & Innovation Center, Mitsubishi Chemical Corporation 1000 Kamoshida-cho, Aoba-ku Yokohama-shi Kanagawa 227-8502 Japan
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Glen R Jones
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Ibrahim O Raji
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| |
Collapse
|
7
|
Lehnen AC, Hanke S, Schneider M, Radelof CML, Perestrelo J, Reinicke S, Reifarth M, Taubert A, Arndt KM, Hartlieb M. Modification of 3D-Printed PLA Structures Using Photo-Iniferter Polymerization: Toward On-Demand Antimicrobial Water Filters. Macromol Rapid Commun 2023; 44:e2300408. [PMID: 37581256 DOI: 10.1002/marc.202300408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Indexed: 08/16/2023]
Abstract
Water filtration is an important application to ensure the accessibility of clean drinking water. As requirements and contaminants vary on a local level, adjustable filter devices and their evaluation with contaminants are required. Within this work, modular filter devices are designed featuring an adjustable surface functionalization. For this purpose, 3D-printed structures are created consisting of bio-based poly(lactic acid) (PLA) that are manufactured by extrusion printing. The surface of PLA is activated with amino groups that are used to install xanthates as chain transfer agents. Subsequently, photo-iniferter (PI) polymerization is used to create cationic polymer brushes on the surface of PLA substrates. Multiple surface characterization techniques are employed to prove successful growth of polymer brushes on PLA. After initial optimization studies on flat surfaces, filter devices are printed, functionalized, and used to remove bacteria from contaminated water. Significant reduction of the number of microorganisms is detected after filtration (single filtration or cycling) and contaminating organism can also be removed from freshwater samples by simple incubation with a 3D-printed filter. The herein developed setup for producing functional filter devices and probing their performance in affinity filtration is a useful platform technology, enabling the rapid testing of polymer brushes for such applications.
Collapse
Affiliation(s)
- Anne-Catherine Lehnen
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Sebastian Hanke
- Molecular Biotechnology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Matthias Schneider
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Charlotte M L Radelof
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Joana Perestrelo
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Stefan Reinicke
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Martin Reifarth
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Andreas Taubert
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Katja M Arndt
- Molecular Biotechnology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Matthias Hartlieb
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
8
|
Xue Y, Cao M, Chen C, Zhong M. Design of Microstructure-Engineered Polymers for Energy and Environmental Conservation. JACS AU 2023; 3:1284-1300. [PMID: 37234122 PMCID: PMC10207122 DOI: 10.1021/jacsau.3c00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
With the ever-growing demand for sustainability, designing polymeric materials using readily accessible feedstocks provides potential solutions to address the challenges in energy and environmental conservation. Complementing the prevailing strategy of varying chemical composition, engineering microstructures of polymer chains by precisely controlling their chain length distribution, main chain regio-/stereoregularity, monomer or segment sequence, and architecture creates a powerful toolbox to rapidly access diversified material properties. In this Perspective, we lay out recent advances in utilizing appropriately designed polymers in a wide range of applications such as plastic recycling, water purification, and solar energy storage and conversion. With decoupled structural parameters, these studies have established various microstructure-function relationships. Given the progress outlined here, we envision that the microstructure-engineering strategy will accelerate the design and optimization of polymeric materials to meet sustainability criteria.
Collapse
Affiliation(s)
- Yazhen Xue
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mengxue Cao
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Charles Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mingjiang Zhong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
9
|
Conrad JC, Robertson ML. Shaping the Structure and Response of Surface-Grafted Polymer Brushes via the Molecular Weight Distribution. JACS AU 2023; 3:333-343. [PMID: 36873679 PMCID: PMC9975839 DOI: 10.1021/jacsau.2c00638] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Breadth in the molecular weight distribution is an inherent feature of synthetic polymer systems. While in the past this was typically considered as an unavoidable consequence of polymer synthesis, multiple recent studies have shown that tailoring the molecular weight distribution can alter the properties of polymer brushes grafted to surfaces. In this Perspective, we describe recent advances in synthetic methods to control the molecular weight distribution of surface-grafted polymers and highlight studies that reveal how shaping this distribution can generate novel or enhanced functionality in these materials.
Collapse
Affiliation(s)
- Jacinta C. Conrad
- William A. Brookshire Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Megan L. Robertson
- William A. Brookshire Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
10
|
Lehnen AC, Gurke J, Bapolisi AM, Reifarth M, Bekir M, Hartlieb M. Xanthate-supported photo-iniferter (XPI)-RAFT polymerization: facile and rapid access to complex macromolecules. Chem Sci 2023; 14:593-603. [PMID: 36741515 PMCID: PMC9847670 DOI: 10.1039/d2sc05197d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
Xanthate-supported photo-iniferter (XPI)-reversible addition-fragmentation chain-transfer (RAFT) polymerization is introduced as a fast and versatile photo-polymerization strategy. Small amounts of xanthate are added to conventional RAFT polymerizations to act as a photo-iniferter under light irradiation. Radical exchange is facilitated by the main CTA ensuring control over the molecular weight distribution, while xanthate enables an efficient photo-(re)activation. The photo-active moiety is thus introduced into the polymer as an end group, which makes chain extension of the produced polymers possible directly by irradiation. This is in sharp contrast to conventional photo-initiators, or photo electron transfer (PET)-RAFT polymerizations, where radical generation depends on the added small molecules. In contrast to regular photo-iniferter-RAFT polymerization, photo-activation is decoupled from polymerization control, rendering XPI-RAFT an elegant tool for the fabrication of defined and complex macromolecules. The method is oxygen tolerant and robust and was used to perform screenings in a well-plate format, and it was even possible to produce multiblock copolymers in a coffee mug under open-to-air conditions. XPI-RAFT does not rely on highly specialized equipment and qualifies as a universal tool for the straightforward synthesis of complex macromolecules. The method is user-friendly and broadens the scope of what can be achieved with photo-polymerization techniques.
Collapse
Affiliation(s)
- Anne-Catherine Lehnen
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Johannes Gurke
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Alain M Bapolisi
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
| | - Martin Reifarth
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Marek Bekir
- University of Potsdam, Institute of Physics and Astronomy Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
| | - Matthias Hartlieb
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| |
Collapse
|
11
|
Gan Z, Zhou D, Ma Z, Xu M, Xu Z, He J, Zhou J, Dong XH. Local Chain Feature Mandated Self-Assembly of Block Copolymers. J Am Chem Soc 2023; 145:487-497. [PMID: 36572645 DOI: 10.1021/jacs.2c10761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work demonstrates an effective and robust approach to regulate phase behaviors of a block copolymer by programming local features into otherwise homogeneous linear chains. A library of sequence-defined, isomeric block copolymers with globally the same composition but locally different side chain patterns were elaborately designed and prepared through an iterative convergent growth method. The precise chemical structure and uniform chain length rule out all inherent molecular defects associated with statistical distribution. The local features are found to exert surprisingly pronounced impacts on the self-assembly process, which have yet to be well recognized. While other molecular parameters remain essentially the same, simply rearranging a few methylene units among the alkyl side chains leads to strikingly different phase behaviors, bringing about (i) a rich diversity of nanostructures across hexagonally packed cylinders, Frank-Kasper A15 phase, Frank-Kasper σ phase, dodecagonal quasicrystals, and disordered state; (ii) a significant change of lattice dimension; and (iii) a substantial shift of order-to-disorder transition temperature (up to 40 °C). Different from the commonly observed enthalpy-dominated cases, the frustration due to the divergence between the native molecular geometry originating from side chain distribution and the local packing environment mandated by lattice symmetry is believed to play a pivotal role. Engineering the local chain feature introduces another level of structural complexity, opening up a new and effective pathway for modulating phase transition without changing the chemistry or composition.
Collapse
Affiliation(s)
- Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhuoqi Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawen He
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Pizzi D, Humphries J, Morrow JP, Mahmoud AM, Fletcher NL, Sonderegger SE, Bell CA, Thurecht KJ, Kempe K. Probing the Biocompatibility and Immune Cell Association of Chiral, Water-Soluble, Bottlebrush Poly(2-oxazoline)s. Biomacromolecules 2023; 24:246-257. [PMID: 36464844 DOI: 10.1021/acs.biomac.2c01105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Poly(2-oxazoline)s (POx) have received substantial attention as poly(ethylene glycol) (PEG) alternatives in the biomedical field due to their biocompatibility, high functionality, and ease of synthesis. While POx have demonstrated strong potential as biomaterial constituents, the larger family of poly(cyclic imino ether)s (PCIE) to which POx belongs remains widely underexplored. One highly interesting sub-class of PCIE is poly(2,4-disubstituted-2-oxazoline)s (PdOx), which bear an additional substituent on the backbone of the polymers' repeating units. This allows fine-tuning of the hydrophilic/hydrophobic balance and renders the PdOx chiral when enantiopure 2-oxazoline monomers are used. Herein, we synthesize new water-soluble (R-/S-/RS-) poly(oligo(2-ethyl-4-methyl-2-oxazoline) methacrylate) (P(OEtMeOxMA)) bottlebrushes and compare them to well-established PEtOx- and PEG-based bottlebrush controls in terms of their physical properties, hydrophilicity, and biological behavior. We reveal that the P(OEtMeOxMA) bottlebrushes show a lower critical solution temperature behavior at a physiologically relevant temperature (∼44 °C) and that the enantiopure (R-/S-) variants display a chiral secondary structure. Importantly, we demonstrate the biocompatibility of the chiral P(OEtMeOxMA) bottlebrushes through cellular association and mouse biodistribution studies and show that these systems display higher immune cell association and organ accumulation than the two control polymers. These novel materials possess properties that hold promise for applications in the field of nanomedicine and may be beneficial carriers for therapeutics that require enhanced cellular association and immune cell interaction.
Collapse
Affiliation(s)
- David Pizzi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - James Humphries
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queesland4072, Australia
| | - Joshua P Morrow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Ayaat M Mahmoud
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queesland4072, Australia
| | - Stefan E Sonderegger
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queesland4072, Australia
| | - Craig A Bell
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queesland4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queesland4072, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia.,Materials Science and Engineering, Monash University, Clayton, Victoria3800, Australia
| |
Collapse
|
13
|
Chiarcos R, Perego M, Laus M. Polymer Brushes by Grafting to Reaction in Melt: New Insights into the Mechanism. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) Università del Piemonte Orientale (UPO) Viale T. Michel 11 Alessandria 15121 Italy
| | - Michele Perego
- CNR‐IMM Unit of Agrate Brianza Via C. Olivetti 2 Agrate Brianza 20864 Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) Università del Piemonte Orientale (UPO) Viale T. Michel 11 Alessandria 15121 Italy
| |
Collapse
|
14
|
Kim J, Beyer V, Becer CR. Poly(2-oxazoline) with Pendant Hydroxyl Groups via a Silyl Ether-Based Protecting Group. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jungyeon Kim
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Valentin Beyer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- IRF Life Sciences, KU Leuven Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| | - C. Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Murphy EA, Chen YQ, Albanese K, Blankenship JR, Abdilla A, Bates MW, Zhang C, Bates CM, Hawker CJ. Efficient Creation and Morphological Analysis of ABC Triblock Terpolymer Libraries. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizabeth A. Murphy
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
| | - Yan-Qiao Chen
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
| | - Kaitlin Albanese
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
| | - Jacob R. Blankenship
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
| | - Allison Abdilla
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
| | - Morgan W. Bates
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
| | - Cheng Zhang
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland4072, Australia
| | - Christopher M. Bates
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
- Department of Chemical Engineering, and University of California, Santa Barbara, California93106, United States
- Materials Department, University of California, Santa Barbara, California93106, United States
| | - Craig J. Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
- Materials Department, University of California, Santa Barbara, California93106, United States
| |
Collapse
|
16
|
Antonopoulou MN, Whitfield R, Truong NP, Anastasaki A. Controlling polymer dispersity using switchable RAFT agents: Unravelling the effect of the organic content and degree of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Ogbonna N, Dearman M, Cho CT, Bharti B, Peters AJ, Lawrence J. Topologically Precise and Discrete Bottlebrush Polymers: Synthesis, Characterization, and Structure-Property Relationships. JACS AU 2022; 2:898-905. [PMID: 35557765 PMCID: PMC9088296 DOI: 10.1021/jacsau.2c00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 05/17/2023]
Abstract
As the complexity of polymer structure grows, so do the challenges for developing an accurate understanding of their structure-property relationships. Here, the synthesis of bottlebrush polymers with topologically precise and fully discrete structures is reported. A key feature of the strategy is the synthesis of discrete macromonomer libraries for their polymerization into topologically precise bottlebrushes that can be separated into discrete bottlebrushes (Đ = 1.0). As the system becomes more discrete, packing efficiency increases, distinct three-phase Langmuir-Blodgett isotherms are observed, and its glass transition temperature becomes responsive to side-chain sequence. Overall, this work presents a versatile strategy to access a range of precision bottlebrush polymers and unravels the impact of side-chain topology on their macroscopic properties. Precise control over side chains opens a pathway for tailoring polymer properties without changing their chemical makeup.
Collapse
Affiliation(s)
- Nduka
D. Ogbonna
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Michael Dearman
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Cheng-Ta Cho
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Andrew J. Peters
- Department
of Chemical Engineering, Louisiana Tech
University, Ruston, Louisiana 71272, United States
| | - Jimmy Lawrence
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|