1
|
Fujimoto H, Yamamura S, Tobisu M. Aryne Polymerization Enabled by Pyrazole-Induced Nucleophilic Aromatic Substitution. J Am Chem Soc 2025. [PMID: 40368634 DOI: 10.1021/jacs.5c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Despite the widespread use of arynes in organic synthesis, their polymerization remains a significant challenge due to the intrinsic instability and short lifetime of aryne intermediates. Here, we report a method for aryne polymerization using a simple organonucleophile, N-arylpyrazole, as an initiator. This polymerization proceeds via a unique pyrazole-induced nucleophilic aromatic substitution mechanism, facilitating the formation of poly(ortho-arylene)s with narrow polydispersity and well-defined structures. The high chemical stability of N-arylpyrazole allows for a broader scope of applications, including aryne polymerization at the side chain of preformed polymers (graft polymerization) and the synthesis of star-shaped poly(ortho-arylene)s.
Collapse
Affiliation(s)
- Hayato Fujimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shisato Yamamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Li Y, Tao C, Duan L, Gu Z. Observation of the solvent enantio-isotope effect in asymmetric ring-opening of cyclic diaryliodoniums with selenocyanate. Chem Sci 2025; 16:6488-6494. [PMID: 40103713 PMCID: PMC11912500 DOI: 10.1039/d5sc00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
A Cu-catalyzed asymmetric coupling reaction between cyclic diaryliodoniums and the ambident nucleophile KSeCN was reported. Utilizing water as a co-solvent (CH2Cl2/H2O) achieves high chemoselectivity by forming a nitrogen-hydrogen-bond, thereby blocking the N-site of ambident NCSe- species, thus realizing efficient C-Se coupling. In contrast to the well-known kinetic isotope effect used to evaluate whether the C-H/D bond cleavage is rate-determining, the influence of deuterium-containing solvents on enantioselectivity remained largely unexplored. In this reaction, we observed a notable enhancement in enantioselectivity upon replacing H2O with D2O.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Chenyu Tao
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Longhui Duan
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
3
|
Kim N, Choi M, Suh SE, Chenoweth DM. Aryne Chemistry: Generation Methods and Reactions Incorporating Multiple Arynes. Chem Rev 2024; 124:11435-11522. [PMID: 39383091 DOI: 10.1021/acs.chemrev.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Arynes hold significance for the efficient fusion of (hetero) arenes with diverse substrates, advancing the construction of complex molecular frameworks. Employing multiple equivalents of arynes is particularly effective in the rapid formation of polycyclic cores found in optoelectronic materials and bioactive compounds. However, the inherent reactivity of arynes often leads to side reactions, yielding unanticipated products and underlining the importance of a detailed investigation into the use of multiple arynes to fine-tune their reactivity. This review centers on methodologies and syntheses in organic reactions involving multiple arynes, categorizing based on mechanisms like cycloadditions, σ-bond insertions, nucleophilic additions, and ene reactions, and discusses aryne polymerization. The categorization based on these mechanisms includes two primary approaches: the first entails multiple aryne engagement within a single step while the second approach involves using a single equivalent of aryne sequentially across multiple steps, with both requiring strict reactivity control to ensure precise aryne participation in each respective step. Additionally, the review provides an in-depth analysis of the selection of aryne precursors, organized chronologically and by activation strategy, offering a comprehensive background that supports the main theme of multiple aryne utilization. The expectation remains that this comprehensive review will be invaluable in designing advanced syntheses engaging multiple arynes.
Collapse
Affiliation(s)
- Nayoung Kim
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Myungsoo Choi
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Yan Q, Zhuang Z, Fan R, Wang J, Yao T, Tan J. Access to N-Aryl (Iso)quinolones via Aryne-Induced Three-Component Coupling Reaction. Org Lett 2024; 26:1840-1844. [PMID: 38412291 DOI: 10.1021/acs.orglett.3c04385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
N-Aryl (iso)quinolones are of increasing interest in material and medicinal chemistry, although general routes for their provision remain underexplored, especially when compared with its N-alkyl counterparts. Herein, we report a modular and transition-metal-free, aryne-induced three-component coupling protocol that allows the facile synthesis of structurally diverse N-aryl (iso)quinolones from readily accessible halo-(iso)quinolines in the presence of water. Preliminary results highlight the applicability of our method through scale-up synthesis, downstream derivatization, and flexible synthesis involving other types of aryne precursors.
Collapse
Affiliation(s)
- Qiang Yan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhe Zhuang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Rong Fan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Jingwen Wang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Tuanli Yao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiajing Tan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
5
|
Yanagawa A, Inoue R, Morisaki Y. Synthesis and characterization of one-handed helical oligo( o-phenylene)s: control of axial chirality by planar chiral [2.2]paracyclophane. Chem Commun (Camb) 2024; 60:1468-1471. [PMID: 38223998 DOI: 10.1039/d3cc05000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Optically active oligo(o-phenylene)-layered molecules were synthesized from planar chiral enantiopure [2.2]paracyclophane. Their structures and optical properties were characterized by experimental and theoretical approaches. The axial chiralities between phenylene rings of the oligo(o-phenylene)s were controlled by the planar chirality to form one-handed helical structures. The o-quinquephenyl-layered molecule was emissive, and circularly polarized luminescence was observed with a high anisotropy factor (|glum| value) of 0.012.
Collapse
Affiliation(s)
- Asuka Yanagawa
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Ryo Inoue
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Yasuhiro Morisaki
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
6
|
Báez-Grez R, Pino-Rios R. On the aromaticity and stability of benzynes in the ground and lowest-lying triplet excited states. J Comput Chem 2024; 45:6-12. [PMID: 37671655 DOI: 10.1002/jcc.27214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
In this work, we have revisited the aromaticity of benzyne isomers at the unrestricted density functional theory level (UDFT) using the energetic, magnetic, and delocalization criteria. In addition, this last criterion has also been analyzed employing complete active space (CASSCF) calculations. The results show conservation of aromaticity in these monocycles. Additionally it is observed that this trend is maintained in polycyclic aromatic hydrocarbon derivatives such as biradical didehydrophenanthrenes. Do these results imply a violation of Baird's rule? The answer is No, because this conservation in aromaticity is due to the loss of hydrogen atoms affects only the electronic σ skeleton and exerts a minor influence on the π cloud. Additionally, we have analyzed the relative stability of benzyne isomers and their relationship with experimental ΔES-T values. According to the literature, the stability of the benzynes in the singlet state is due to an effective interaction between the electrons of the biradical centers; however, this effect is completely reversed in the triplet state, which explains why the para isomer has the lowest ΔES-T gap.
Collapse
Affiliation(s)
- Rodrigo Báez-Grez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Ricardo Pino-Rios
- Instituto de Estudios de la Salud, Universidad Arturo, Chile
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Chile
| |
Collapse
|
7
|
Sephton T, Charitou A, Trujillo C, Large JM, Butterworth S, Greaney MF. Aryne-Enabled C-N Arylation of Anilines. Angew Chem Int Ed Engl 2023; 62:e202310583. [PMID: 37850515 PMCID: PMC10952162 DOI: 10.1002/anie.202310583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Anilines are potentially high-value arylating agents, but are limited by the low reactivity of the strong C-N bond. We show that the reactive intermediate benzyne can be used to both activate anilines, and set-up an aryl transfer reaction in a single step. The reaction does not require any transition metal catalysts or stoichiometric organometallics, and establishes a metal-free route to valuable biaryl products by functionalizing the aniline C-N bond.
Collapse
Affiliation(s)
- Thomas Sephton
- School of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | | | | | - Jonathan M. Large
- LifeArc, Accelerator BuildingOpen Innovation CampusStevenageSG1 2FXUK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterM13 9PLUK
| | | |
Collapse
|
8
|
Guo Y, Zhuang Z, Feng X, Ma Q, Li N, Jin C, Yoshida H, Tan J. Selective S-Arylation of Sulfenamides with Arynes: Access to Sulfilimines. Org Lett 2023; 25:7192-7197. [PMID: 37733632 DOI: 10.1021/acs.orglett.3c02785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Sulfilimines, the aza analogues of sulfoxides, are of increasing interest in medicinal and agrochemical research programs. However, the development of efficient routes for their synthesis has remained relatively unexplored. In this study, we report a transition metal-free, selective S-arylation reaction between sulfenamides and arynes, enabling the facile preparation of structurally diverse sulfilimines under mild and redox-neutral conditions in good yields. The application value of our method was further demonstrated by scale-up synthesis, downstream derivatization, and robustness screen.
Collapse
Affiliation(s)
- Yifeng Guo
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Zhe Zhuang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Xiaoying Feng
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Quanyu Ma
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Ningning Li
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Chaochao Jin
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Hiroto Yoshida
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Jiajing Tan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
9
|
Chen J, Liu S, Su S, Fan R, Zhang R, Meng W, Tan J. Sulfonium-based precise alkyl transposition reactions. SCIENCE ADVANCES 2023; 9:eadi1370. [PMID: 37713480 PMCID: PMC10881050 DOI: 10.1126/sciadv.adi1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
S-adenosyl-L-methionine (SAM), a sulfonium-based cofactor, plays an important role in numerous biological processes as methyl donor. Inspired by the function of sulfonium motif in this nature's synthetic toolkit, we here present an aryne-activation strategy that the sulfonium intermediates in situ generated from thioethers display unique reactivity toward alkyl group transposition. Experimental and theoretical studies indicate that the reaction occurs in an intermolecular fashion where the TfO--incorporated [K(18-crown-6)] complex acts as a key promoter for this thermodynamically favored process. Next, a series of robust, easy-to-prepare sulfonium salts are designed and developed as electrophilic alkylation reagents accordingly. Both systems feature for broad scope, excellent selectivity, and simple operation. Moreover, we highlight the synthetic value through molecular editing and late-stage modification of complex scaffolds or even active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Shilu Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Shuaisong Su
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Rong Fan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Ruirui Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
10
|
Fan R, Liu S, Yan Q, Wei Y, Wang J, Lan Y, Tan J. Empowering boronic acids as hydroxyl synthons for aryne induced three-component coupling reactions. Chem Sci 2023; 14:4278-4287. [PMID: 37123174 PMCID: PMC10132127 DOI: 10.1039/d3sc00072a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Boronic acids have become one of the most prevalent classes of reagents in modern organic synthesis, displaying various reactivity profiles via C-B bond cleavage. Herein, we describe the utilization of a readily available boronic acid as an efficient surrogate of hydroxide upon activation via fluoride complexation. The hitherto unknown aryne induced ring-opening reaction of cyclic sulfides and three-component coupling of fluoro-azaarenes are developed to exemplify the application value. Different from metal hydroxides or water, this novel hydroxy source displays mild activation conditions, great functionality tolerance and structural tunability, which shall engender a new synthetic paradigm and in a broad context offer new blueprints for organoboron chemistry. Detailed computational studies also recognize the fluoride activation mode, provide in-depth insights into the unprecedented mechanistic pathway and elucidate the reactivity difference of ArB(OH) x F y complexes, which fully support the experimental data.
Collapse
Affiliation(s)
- Rong Fan
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Shihan Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400030 China
| | - Qiang Yan
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yun Wei
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Jingwen Wang
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400030 China
- ZhengZhou JiShu Institute of AI Science Zhengzhou 450000 China
| | - Jiajing Tan
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
11
|
Bao H, Guo Y, Shi J, Li Y. Two Cascade Processes Initiated by the Insertion of Benzyne into the Se═O Bond. Org Lett 2023; 25:1514-1518. [PMID: 36852953 DOI: 10.1021/acs.orglett.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Two sets of cascade processes have been realized, both of which were initiated with a benzyne insertion into the Se═O bond. The key factors to differentiate these processes are based on the structures of diaryl selenium oxides and reaction conditions. When diaryl selenium oxides containing an ortho weak σ-electron-withdrawing group were used, triarylselenonium salts were obtained at room temperature, while ortho-(aryloxy)phenyl phenyl selanes could be produced from diaryl selenium oxides at 100 °C.
Collapse
Affiliation(s)
- Hongpeng Bao
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China 400030
| | - Yongjin Guo
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China 400030
| | - Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China 400030.,College of Chemistry, Jilin University, Changchun, P. R. China 130012
| |
Collapse
|
12
|
Aluminum-Catalyzed Cross Selective C3–N1′ Coupling Reactions of N-Methoxyindoles with Indoles. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
C3–N1′ bond formation of bisindoles has been a great challenge due to the intrinsic reactivity of indoles as both C3 and N1-nucleophilic character. Herein, we demonstrate an C3–N1′ cross-coupling reaction of indoles using N-methoxyindoles as N-electrophilic indole reagents in the presence of Lewis acid. The bisindoles generated in this transformation are latent C3-nucleophile, allowing them to be used as strategic intermediates in sequential C3–N1′–C3′–N1″ triindole formations. The potential synthetic usefulness of this sequential transformation was highlighted upon application to the construction of C3–N1 looped polyindoles.
Collapse
|
13
|
Ma C, Xie J, Zeng X, Wei Z, Wei Y. Radical-mediated carboselenation of terminal alkynes under mild conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo01024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free radical carboselenation of terminal alkynes is developed for the synthesis of (E)-γ-seleno-substituted allyl nitriles with excellent regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Chixiao Ma
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
| | - Jingli Xie
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
| | - Xianghua Zeng
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Zheyu Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|