1
|
Emory ZC, Culbertson HJ, Gaster CB, LaVerne JA, Burns PC. Influence of Node-Linker Connectivity on Radiolytic Stability of Thorium-Terephthalate Coordination Polymers. Inorg Chem 2025; 64:8725-8733. [PMID: 40270124 DOI: 10.1021/acs.inorgchem.5c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Metal-organic frameworks (MOFs) are promising candidates for applications in the nuclear fuel cycle due to their high porosity and tunable properties. However, for effective use in this context, these materials must be stable under ionizing radiation conditions. While previous studies have explored variations in metal node identities, topologies, and linker types, this study focuses on maintaining consistent metal and linker components to identify structural features that enhance radiation stability. We investigated the radiation resistance of three thorium-terephthalate hybrid materials─Th(BDC)2(DMF)2 (1,4-benzenedicarboxylic acid, dimethylformamide), Th(BDC)2, and Th-UiO-66─irradiated with He-ions up to a dose of 227 MGy. Structural stability was assessed through powder X-ray diffraction (PXRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and density functional theory (DFT) calculations. The radiation stability thresholds were identified for Th(BDC)2(DMF)2 and Th-UiO-66, with Th(BDC)2 demonstrating exceptional stability even at the highest radiation dose. The observed stability trend is Th(BDC)2 > Th(BDC)2(DMF)2 > Th-UiO-66. Notably, the inclusion of DMF in Th(BDC)2(DMF)2 enhanced its radiation tolerance, likely due to DMF acting as a sacrificial ligand, preserving linker integrity at higher doses. Additionally, more unique node-linker connections and shorter interligand distances contributed to the improved radiolytic stability of these materials.
Collapse
Affiliation(s)
- Zoë C Emory
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Heather J Culbertson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Cale B Gaster
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame 46556, Indiana, United States
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame 46556, Indiana, United States
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame 46556, Indiana, United States
| |
Collapse
|
2
|
Marchetti D, Riboni N, Inge AK, Cheung O, Gemmi M, Dalcanale E, Bianchi F, Massera C, Pedrini A. A Flexible Interpenetrated Diamondoid Metal-Organic Framework with Aromatic-Enriched Channels as a Preconcentrator for the Detection of Fluorinated Anesthetics. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2025; 37:2230-2240. [PMID: 40160842 PMCID: PMC11949194 DOI: 10.1021/acs.chemmater.4c03221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Flexible metal-organic frameworks (MOFs) are dynamic materials that combine long-range structural order with reversible stimulus-responsive phase transitions. In this study, we report the synthesis and characterization of two isoreticular flexible MOFs, TPPM-CPW(Me) and TPPM-CPW(Ph), constructed by combining the ligand tetra-4-(4-pyridyl)phenylmethane (TPPM) with specific Cu(II) paddle-wheel (CPW) secondary building units (SBUs). These MOFs exhibit reversible transitions between open- and closed-pore forms triggered by external stimuli, such as temperature- and pressure-induced guest removal and uptake. The stability of these frameworks is influenced by the residual equatorial groups on the Cu(II) SBUs, with phenyl-functionalized TPPM-CPW(Ph) displaying dynamic behavior characteristic of third-generation soft porous crystals. Notably, TPPM-CPW(Ph) exhibited high adsorption affinity toward fluorinated guests, including SF6 and volatile anesthetics (VAs) such as desflurane and sevoflurane. This material, when used in solid-phase microextraction (SPME) as fiber coating for the preconcentration of these VAs in air, outperformed commercial CAR/PDMS fibers, underscoring the potential of these versatile flexible MOFs in addressing environmental challenges associated with the use of volatile fluorinated compounds.
Collapse
Affiliation(s)
- Danilo Marchetti
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
- Center
for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Nicolò Riboni
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - A. Ken Inge
- Department
of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, Stockholm 10691, Sweden
| | - Ocean Cheung
- Division
of Nanotechnology and Functional Materials, Department of Materials
Science and Engineering, Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, Uppsala 75103, Sweden
| | - Mauro Gemmi
- Center
for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Enrico Dalcanale
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Federica Bianchi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Chiara Massera
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Alessandro Pedrini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| |
Collapse
|
3
|
Liu Z, Xing C, Wu S, Ma M, Tian J. Biphenyl tetracarboxylic acid-based metal-organic frameworks: a case of topology-dependent thermal expansion. MATERIALS HORIZONS 2024; 11:3345-3351. [PMID: 38683199 DOI: 10.1039/d3mh02185h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The large inherent flexibility and highly modular nature of metal-organic frameworks (MOFs) make them ideal candidates for the study of negative thermal expansion (NTE). Among diverse organic ligands, the biphenyl unit, which can unrestrictedly rotate along its C-C single bond, can largely enhance the structural flexibility. Herein, we explored the thermal expansion behaviors of four indium biphenyl tetracarboxylates (BPTCs). Owing to the different dihedral angles of BPTC ligands and coordination mode of In3+, they show distinct topologies: InOF-1 (nti), InOF-2 (unc), InOF-12 (pts) and InOF-13 (nou). Intriguingly, it is found that the thermal expansion is highly dependent on the specific topology. The MOFs featuring mononuclear nodes show normal positive thermal expansion (PTE), and the magnitudes of coefficients follow the trend of InOF-2 < InOF-12 < InOF-13, inversely related to averaged molecular volumes. In contrast, the InOF-1, composed of a 1D chain of corner-shared InO6 octahedrons, shows pronounced NTE. Detailed high-resolution synchrotron powder X-ray diffraction and lattice dynamic analyses shed light on the fact that NTE in the InOF-1 is a synergy effect of the spring-like distortion of the inorganic 1D helical chain and twisting of the BPTC ligands. The present work shows how the topological arrangement of building blocks governs the thermal expansion behaviors.
Collapse
Affiliation(s)
- Zhanning Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chengyong Xing
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Shaowen Wu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Min Ma
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
4
|
Lu H, Zheng Z, Hou H, Bai Y, Qiu J, Wang J, Lin J. Fine-Tuning X-Ray Sensitivity in Organic-Inorganic Hybrids via an Unprecedented Mixed-Ligand Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305378. [PMID: 37939314 PMCID: PMC10767407 DOI: 10.1002/advs.202305378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Crystalline organic-inorganic hybrids, which exhibit colorimetric responses to ionizing radiation, have recently been recognized as promising alternatives to conventional X-ray dosimeters. However, X-ray-responsive organic-inorganic hybrids are scarce and the strategy to fine-tune their detection sensitivity remains elusive. Herein, an unprecedented mixed-ligand strategy is reported to modulate the X-ray detection efficacy of organic-inorganic hybrids. Deliberately blending the stimuli-responsive terpyridine carboxylate ligand (tpc- ) and the auxiliary pba- group with different ratios gives rise to two OD thorium-bearing clusters (Th-102 and Th-103) and a 1D coordination polymer (Th-104). Notably, distinct X-ray sensitivity is evident as a function of molar ratio of the tpc- ligand, following the trend of Th-102 > Th-103 > Th-104. Moreover, Th-102, which is exclusively built from the tpc- ligands with the highest degree of π-π interactions, exhibits the most sensitive radiochromic and fluorochromic responses toward X-ray with the lowest detection limit of 1.5 mGy. The study anticipates that this mixed-ligand strategy will be a versatile approach to tune the X-ray sensing efficacy of organic-inorganic hybrids.
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Zhaofa Zheng
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Huiliang Hou
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Yaoyao Bai
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| | - Jie Qiu
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| | - Jian‐Qiang Wang
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Jian Lin
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| |
Collapse
|
5
|
Yan Q, Wang J, Zhang L, Liu J, Wahiduzzaman M, Yan N, Yu L, Dupuis R, Wang H, Maurin G, Hirscher M, Guo P, Wang S, Du J. A squarate-pillared titanium oxide quantum sieve towards practical hydrogen isotope separation. Nat Commun 2023; 14:4189. [PMID: 37443163 PMCID: PMC10344961 DOI: 10.1038/s41467-023-39871-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Separating deuterium from hydrogen isotope mixtures is of vital importance to develop nuclear energy industry, as well as other isotope-related advanced technologies. As one of the most promising alternatives to conventional techniques for deuterium purification, kinetic quantum sieving using porous materials has shown a great potential to address this challenging objective. From the knowledge gained in this field; it becomes clear that a quantum sieve encompassing a wide range of practical features in addition to its separation performance is highly demanded to approach the industrial level. Here, the rational design of an ultra-microporous squarate pillared titanium oxide hybrid framework has been achieved, of which we report the comprehensive assessment towards practical deuterium separation. The material not only displays a good performance combining high selectivity and volumetric uptake, reversible adsorption-desorption cycles, and facile regeneration in adsorptive sieving of deuterium, but also features a cost-effective green scalable synthesis using chemical feedstock, and a good stability (thermal, chemical, mechanical and radiolytic) under various working conditions. Our findings provide an overall assessment of the material for hydrogen isotope purification and the results represent a step forward towards next generation practical materials for quantum sieving of important gas isotopes.
Collapse
Affiliation(s)
- Qingqing Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Hefei National Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Jing Wang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Linda Zhang
- Max Planck Institute for Intelligent Systems, D-70569, Stuttgart, Germany.
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-0845, Japan.
| | - Jiaqi Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 518055, Shenzhen, China
| | | | - Nana Yan
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Science, Bejing, 100049, China
| | - Liang Yu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 518055, Shenzhen, China
| | - Romain Dupuis
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- LMGC, Univ. Montpellier, CNRS, Montpellier, France
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 518055, Shenzhen, China
| | | | - Michael Hirscher
- Max Planck Institute for Intelligent Systems, D-70569, Stuttgart, Germany
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
- University of Chinese Academy of Science, Bejing, 100049, China.
| | - Sujing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Hefei National Laboratory, University of Science and Technology of China, 230026, Hefei, China.
| | - Jiangfeng Du
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Hefei National Laboratory, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
6
|
Wang JY, Mei L, Liu Y, Jin QY, Hu KQ, Yu JP, Jiao CS, Zhang M, Shi WQ. Unveiling Structural Diversity of Uranyl Compounds of Aprotic 4,4'-Bipyridine N, N'-Dioxide Bearing O-Donors. ACS OMEGA 2023; 8:8894-8909. [PMID: 36910938 PMCID: PMC9996810 DOI: 10.1021/acsomega.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
As an aprotic O-donor ligand, 4,4'-bipyridine N,N'-dioxide (DPO) shows good potential for the preparation of uranyl coordination compounds. In this work, by regulating reactant compositions and synthesis conditions, diverse coordination assembly between uranyl and DPO under different reaction conditions was achieved in the presence of other coexisting O-donors. A total of ten uranyl-DPO compounds, U-DPO-1 to U-DPO-10, have been synthesized by evaporation or hydro/solvothermal treatment, and the possible competition and cooperation of DPO with other O-donors for the formation of these uranyl-DPO compounds are discussed. Starting with an aqueous solution of uranyl nitrate, it is found that an anionic nitrate or hydroxyl group is involved in the coordination sphere of uranyl in U-DPO-1 ((UO2)(NO3)2(H2O)2·(DPO)), U-DPO-2 ((UO2)(NO3)2(DPO)), and U-DPO-3 ((UO2)(DPO)(μ2-OH)2), where DPO takes three different kinds of coordination modes, i.e. uncoordinated, monodentate, and biconnected. The utilization of UO2(CF3SO3)2 in acetonitrile, instead of an aqueous solution of uranyl nitrate, precludes the participation of nitrate and hydroxyl, and ensures the engagement of DPO ligands (4-5 DPO ligands for each uranyl) in a uranyl coordination sphere of U-DPO-4 ([(UO2)(CF3SO3)(DPO)2](CF3SO3)), U-DPO-5 ([UO2(H2O)(DPO)2](CF3SO3)2) and U-DPO-6 ([(UO2)(DPO)2.5](CF3SO3)2). Moreover, when combined with anionic carboxylate ligands, terephthalic acid (H2TPA), isophthalic acid (H2IPA), and succinic acid (H2SA), DPO works well with them to produce four mixed-ligand uranyl compounds with similar structures of two-dimensional (2D) networks or three-dimensional (3D) frameworks, U-DPO-7 ((UO2)(TPA)(DPO)), U-DPO-8 ((UO2)2(DPO)(IPA)2·0.5H2O), U-DPO-9 ((UO2)(SA)(DPO)·H2O), and U-DPO-10 ((UO2)2(μ2-OH)(SA)1.5(DPO)). Density functional theory (DFT) calculations conducted to probe the bonding features between uranyl ions and different O-donor ligands show that the bonding ability of DPO is better than that of anionic CF3SO3 -, nitrate, and a neutral H2O molecule and comparable to that of an anionic carboxylate group. Characterization of physicochemical properties of U-DPO-7 and U-DPO-10 with high phase purity including infrared (IR) spectroscopy, thermogravimetric analysis (TGA), and luminescence properties is also provided.
Collapse
Affiliation(s)
- Jing-yang Wang
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu-yan Jin
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-qiu Hu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-pan Yu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cai-shan Jiao
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
| | - Meng Zhang
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
| | - Wei-qun Shi
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Park KC, Kittikhunnatham P, Lim J, Thaggard GC, Liu Y, Martin CR, Leith GA, Toler DJ, Ta AT, Birkner N, Lehman-Andino I, Hernandez-Jimenez A, Morrison G, Amoroso JW, Zur Loye HC, DiPrete DP, Smith MD, Brinkman KS, Phillpot SR, Shustova NB. f-block MOFs: A Pathway to Heterometallic Transuranics. Angew Chem Int Ed Engl 2023; 62:e202216349. [PMID: 36450099 DOI: 10.1002/anie.202216349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
A novel series of heterometallic f-block-frameworks including the first examples of transuranic heterometallic 238 U/239 Pu-metal-organic frameworks (MOFs) and a novel monometallic 239 Pu-analog are reported. In combination with theoretical calculations, we probed the kinetics and thermodynamics of heterometallic actinide(An)-MOF formation and reported the first value of a U-to-Th transmetallation rate. We concluded that formation of uranyl species could be a driving force for solid-state metathesis. Density of states near the Fermi edge, enthalpy of formation, band gap, proton affinity, and thermal/chemical stability were probed as a function of metal ratios. Furthermore, we achieved 97 % of the theoretical maximum capacity for An-integration. These studies shed light on fundamental aspects of actinide chemistry and also foreshadow avenues for the development of emerging classes of An-containing materials, including radioisotope thermoelectric generators or metalloradiopharmaceuticals.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Donald J Toler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - An T Ta
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Nancy Birkner
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | | | | | - Gregory Morrison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jake W Amoroso
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.,Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Dave P DiPrete
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kyle S Brinkman
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Jian T, Vasiliu M, Lee ZR, Zhang Z, Dixon DA, Gibson JK. Dinuclear Complexes of Uranyl, Neptunyl, and Plutonyl: Structures and Oxidation States Revealed by Experiment and Theory. J Phys Chem A 2022; 126:7695-7708. [PMID: 36251495 DOI: 10.1021/acs.jpca.2c06121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dinuclear perchlorate complexes of uranium, neptunium, and plutonium were characterized by reactivity and DFT, with results revealing structures containing pentavalent, hexavalent, and heptavalent actinyls, and actinyl-actinyl interactions (AAIs). Electrospray ionization produced native complexes [(AnO2)2(ClO4)3]- for An:An = U:U, Np:Np, Pu:Pu, and Np:Pu, which are intuitively formulated as actinyl(V) perchlorates. However, DFT identified lower-energy structures [(AnO2)(AnO3)(ClO4)2(ClO3)]- comprising a perchlorate fragmented to ClO3, actinyl(VI) cation AnVIO22+, and neutral AnO3. For U:U and Np:Np, and Np in Np:Pu, the coordinated AnO3 is calculated as actinyl(VI) with an equatorial oxo, [Oyl═AnVI═Oyl][═Oeq], whereas for Pu:Pu, it is plutonyl(V) oxyl, [Oyl═PuV═Oyl][-Oeq•]. The implied lower stability of PuVI versus NpVI indicates weaker Pu═Oeq versus Np═Oeq bonding. Adsorption of O2 by the U:U complex suggests oxidation of UV to UVI, corroborating the assignment of perchlorate [(AnVO2)2(ClO4)3]-. DFT predicts the O2 adducts are [(AnVIO2)(O2)(AnVIO2)(ClO4)3]- with actinyls oxidized from +V to +VI by bridging peroxide, O22-. In accordance with reactivity, O2- addition is computed as substantially exothermic for U:U and least favorable for Pu:Pu. Collision-induced dissociation of native complexes eliminated ClO2 to yield [(AnO2)(O)2(AnO2)(ClO4)2]-, in which fragmented O atoms bridge as oxyl O-• and oxo O2- to yield uranyl(VI) and plutonyl(VI), or as oxos O2- to yield neptunyl(VII), [Oyl═NpVII═Oyl]3+.
Collapse
Affiliation(s)
- Tian Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Zachary R Lee
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States.,Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky 40351, United States
| | - Zhicheng Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Park KC, Martin CR, Leith GA, Thaggard GC, Wilson GR, Yarbrough BJ, Maldeni Kankanamalage BKP, Kittikhunnatham P, Mathur A, Jatoi I, Manzi MA, Lim J, Lehman-Andino I, Hernandez-Jimenez A, Amoroso JW, DiPrete DP, Liu Y, Schaeperkoetter J, Misture ST, Phillpot SR, Hu S, Li Y, Leydier A, Proust V, Grandjean A, Smith MD, Shustova NB. Capture Instead of Release: Defect-Modulated Radionuclide Leaching Kinetics in Metal-Organic Frameworks. J Am Chem Soc 2022; 144:16139-16149. [PMID: 36027644 DOI: 10.1021/jacs.2c06905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparison of defect-controlled leaching-kinetics modulation of metal-organic frameworks (MOFs) and porous functionalized silica-based materials was performed on the example of a radionuclide and radionuclide surrogate for the first time, revealing an unprecedented readsorption phenomenon. On a series of zirconium-based MOFs as model systems, we demonstrated the ability to capture and retain >99% of the transuranic 241Am radionuclide after 1 week of storage. We report the possibility of tailoring radionuclide release kinetics in MOFs through framework defects as a function of postsynthetically installed organic ligands including cation-chelating crown ether-based linkers. Based on comprehensive analysis using spectroscopy (EXAFS, UV-vis, FTIR, and NMR), X-ray crystallography (single crystal and powder), and theoretical calculations (nine kinetics models and structure simulations), we demonstrated the synergy of radionuclide integration methods, topological restrictions, postsynthetic scaffold modification, and defect engineering. This combination is inaccessible in any other material and highlights the advantages of using well-defined frameworks for gaining fundamental knowledge necessary for the advancement of actinide-based material development, providing a pathway for addressing upcoming challenges in the nuclear waste administration sector.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Preecha Kittikhunnatham
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Isak Jatoi
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Mackenzie A Manzi
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | | | | | - Jake W Amoroso
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - David P DiPrete
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joseph Schaeperkoetter
- Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802, United States
| | - Scott T Misture
- Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802, United States
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Shenyang Hu
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yulan Li
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Antoine Leydier
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Vanessa Proust
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Agnès Grandjean
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
10
|
Wasson MC, Xie H, Wang X, Duncan JS, Farha OK. Structural transformation of metal oxo species within UiO-66 type metal–organic frameworks. CrystEngComm 2022. [DOI: 10.1039/d2ce00650b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A rare example of phase transitions within Th-based MOFs is reported, relevant for nuclear energy and waste management. Further investigations into phase transitions in isostructural frameworks (Zr, Hf, Ce) provide a comparison of different hexanuclear clusters' stabilities.
Collapse
Affiliation(s)
- Megan C. Wasson
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Haomiao Xie
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Xingjie Wang
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joshua S. Duncan
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K. Farha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
11
|
Fairley M, Felton DE, Sigmon GE, Szymanowski JES, Poole NA, Nyman M, Burns PC, LaVerne JA. Radiation-Induced Solid-State Transformations of Uranyl Peroxides. Inorg Chem 2021; 61:882-889. [PMID: 34965099 DOI: 10.1021/acs.inorgchem.1c02603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-crystal X-ray diffraction studies of pristine and γ-irradiated Ca2[UO2(O2)3]·9H2O reveal site-specific atomic-scale changes during the solid-state progression from a crystalline to X-ray amorphous state with increasing dose. Following γ-irradiation to 1, 1.5, and 2 MGy, the peroxide group not bonded to Ca2+ is progressively replaced by two hydroxyl groups separated by 2.7 Å (with minor changes in the unit cell), whereas the peroxide groups bonded to Ca2+ cations are largely unaffected by irradiation prior to amorphization, which occurs by a dose of 3 MGy. The conversion of peroxide to hydroxyl occurs through interaction of neighboring lattice H2O molecules and ionization of the peroxide O-O bond, which produces two hydroxyls, and allows isolation of the important monomer building block, UO2(O2)2(OH)24-, that is ubiquitous in uranyl capsule polyoxometalates. Steric crowding in the equatorial plane of the uranyl ion develops and promotes transformation to an amorphous phase. In contrast, γ-irradiation of solid Li4[(UO2)(O2)3]·10H2O results in a solid-state transformation to a well-crystallized peroxide-free uranyl oxyhydrate containing sheets of equatorial edge and vertex-sharing uranyl pentagonal bipyramids with likely Li and H2O in interlayer positions. The irradiation products of these two uranyl triperoxide monomers are compared via X-ray diffraction (single-crystal and powder) and Raman spectroscopy, with a focus on the influence of the Li+ and Ca2+ countercations. Highly hydratable and mobile Li+ yields to uranyl hydrolysis reactions, while Ca2+ provides lattice rigidity, allowing observation of the first steps of radiation-promoted transformation of uranyl triperoxide.
Collapse
Affiliation(s)
- Melissa Fairley
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Daniel E Felton
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ginger E Sigmon
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer E S Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nicholas A Poole
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|