1
|
Xi Y, Xu Y, Fan L, Wang C, Xia T, Huang G, Qu J, Chen Y. Palladium-catalyzed intermolecular asymmetric dearomatizative arylation of indoles and benzofurans. SCIENCE ADVANCES 2025; 11:eadw4471. [PMID: 40446054 PMCID: PMC12124395 DOI: 10.1126/sciadv.adw4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025]
Abstract
Indoles represent one of the most robust and synthetically versatile classes of heteroaromatic compounds. However, the stereoselective conversion of planar indole rings into three-dimensional indoline skeletons bearing multiple stereogenic centers remains a persistent challenge in organic synthesis. Herein, we describe an intermolecular catalytic asymmetric dearomatization of simple indoles via a palladium-catalyzed three-component cross-coupling reaction. By using readily accessible diazonium salts and aromatic boronic acids as arylative reagents under a ligand-swap strategy, this method enables the efficient construction of 2,3-diarylated indolines. Mechanistic studies reveal that the chiral BiOx ligand governs the highly stereoselective migratory insertion of the aryl-palladium intermediate into the indole's C═C double bond with complete diastereo- and regioselectivity, whereas the achiral fumarate ligand facilitates the reductive elimination step, as corroborated by density functional theory calculations. Furthermore, this protocol is extended to the dearomative diarylation of benzofurans, affording chiral 2,3-dihydrobenzofuran derivatives with high stereocontrol.
Collapse
Affiliation(s)
- Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Youzhi Xu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Linlin Fan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingting Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Zhang R, Dong G. Skeletal Rearrangements of Amides via Breaking Inert Bonds. Chemistry 2025; 31:e202500595. [PMID: 40095718 PMCID: PMC12057600 DOI: 10.1002/chem.202500595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Skeletal rearrangements of amides provide rapid access to complex nitrogen-containing scaffolds from simple readily available starting materials. While classical reactions such as the Hofmann and Curtius rearrangements have been widely utilized in organic synthesis, recent advances in amide activation strategies have brought new types of transformations and offered many new applications. This review focuses on the development of amide skeletal rearrangement reactions over the past two decades. The content is organized based on the initial bond cleavage pathways: C─N bond cleavage, C─C bond cleavage, and C═O bond activation.
Collapse
Affiliation(s)
- Rui Zhang
- Department of ChemistryThe University of ChicagoChicagoIllinoisUSA
| | - Guangbin Dong
- Department of ChemistryThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
3
|
Jian C, Li Z, Mao Y, Zhu Y, Yu W, Wu J, Li S. Photocatalytic Pyridyl-carbamoylation of Alkenes for Accessing β-Pyridyl Amides. Org Lett 2025; 27:2576-2581. [PMID: 40053395 DOI: 10.1021/acs.orglett.5c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The β-pyridyl amide is a critical scaffold in medical discovery yet lacks efficient synthetic methods. Here, we describe, for the first time, a visible-light-induced, redox-neutral radical cross-coupling reaction involving alkenes, oxamic acids, and cyanopyridines that offers a versatile assembly of β-pyridylamides. This approach features mild reaction conditions, high step efficiency, and substrate breadth, providing a green and efficient strategy for alkene pyridyl-carbamoylation. Achieving this transformation relies on the efficient catalytic system, which adeptly avoids the competing cross-coupling of the nucleophilic carbamoyl radical with the electrophilic pyridyl radical, enabling the three-component radical tandem reaction process with high chemoselectivity.
Collapse
Affiliation(s)
- Cui Jian
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Zhikai Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Yuyuan Mao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Yilin Zhu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Weijie Yu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Shaoyu Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| |
Collapse
|
4
|
Zhang R, Dong G. Skeletal Modification via Activation of Relatively Unstrained C-C Bonds. Acc Chem Res 2025; 58:991-1002. [PMID: 40098451 PMCID: PMC12103097 DOI: 10.1021/acs.accounts.5c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
ConspectusMethods that can directly modify the skeletons of complex molecules have become increasingly attractive for preparing novel analogues without the need for de novo synthesis in drug discovery processes. Among the various skeletal modification approaches, those targeting unstrained C-C bonds are particularly challenging to realize, owing to the relative inertness of these bonds toward common reagents. Compared to C-H or C-X (X: heteroatom) bonds, the activation of unstrained C-C bonds is often not thermodynamically and/or kinetically favorable. As a result, strategies relying on highly strained substrates or oxidative conditions are generally employed, which inevitably limit the scope and applications of C-C bond activation reactions. Hence, the development of redox-neutral catalytic C-C activation methods remains highly sought after for late-stage skeletal modification of complex bioactive compounds.In this Account, we summarize our recent progress in skeletal modifications through the catalytic activation of relatively unstrained C-C bonds. Enabled by transient or removable directing groups (DGs), the scope of C-C bond activation can be greatly expanded, encompassing a wide range of substrates, including ketones, amides, lactams, and biaryls. Consequently, different types of skeletal modification transformations have been developed. The major topics covered include the following: (1) Skeletal rearrangement and "cut-and-sew" transformations of cyclic ketones: we developed an aminopyridine/Rh-N-heterocyclic carbene (NHC) cooperative catalysis system that specifically targets the α-C-C bond of cyclic ketones. For substrates bearing a β-aryl substitution, the rhodacycle formed after the C-C bond activation can undergo an intramolecular C-H activation, resulting in the skeletal rearrangement from cyclopentanones/cyclohexanones to 1-tetralones/1-indanones. Additionally, the "cut-and-sew" transformations between indanones and ethylene or alkynes have been realized to offer a two-carbon ring expansion. (2) Chain homologation of linear amides and downsizing of lactams: the Rh-NHC activation system can be extended to the linear amides and lactams through preinstalling removable DGs. This approach has provided some new tools for precise amide modifications, including tunable homologation of tertiary amides via a "hook-and-slide" strategy and the downsizing transformation of lactams. (3) "Cut-and-sew" transformations of biphenols: using the preinstalled phosphinite DGs, unstrained 2,2'-biphenols can undergo split cross-coupling with various aryl iodides. When diiodide coupling partners are used, an interesting phenylene insertion into the aryl-aryl bond of biphenols can be achieved, which represents another type of "cut-and-sew" transformation.Collectively, these methods provide a reliable means to manipulate inert molecular scaffolds and offer new bond-disconnecting strategies to access useful structural motifs. The applications of these methods in the synthesis of bioactive natural products and complex analogues underscore their practical significance. Mechanistic insights gained from these studies are also discussed, which are expected to inspire future endeavors in this field.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Yeo J, Tassone JP, Ellman JA. Synthesis of α-Quaternary Amides via Cp*Co(III)-Catalyzed Sequential C-H Bond Addition to 1,3-Dienes and Isocyanates. Org Lett 2024; 26:9769-9774. [PMID: 39481088 PMCID: PMC11578270 DOI: 10.1021/acs.orglett.4c03740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The synthesis of sterically congested amides was accomplished via Cp*Co(III)-catalyzed sequential C-H bond addition to 1,3-dienes followed by aminocarbonylation with isocyanates, a coupling partner that had never been utilized in sequential C-H bond addition reactions. A variety of C-H bond reactants, internally substituted dienes, and aromatic isocyanates provided secondary amide products incorporating α-all-carbon quaternary centers. The conversion of the amide products to other useful compound classes was also demonstrated.
Collapse
Affiliation(s)
- Jihyeon Yeo
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Joseph P Tassone
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
6
|
Li M, Wu Y, Song X, Sun J, Zhang Z, Zheng G, Zhang Q. Visible light-mediated organocatalyzed 1,3-aminoacylation of cyclopropane employing N-benzoyl saccharin as bifunctional reagent. Nat Commun 2024; 15:8930. [PMID: 39414792 PMCID: PMC11484876 DOI: 10.1038/s41467-024-53202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The carboamination of unsaturated molecules using bifunctional reagents is considered an attractive approach for the synthesis of nitrogen-containing compounds. However, bifunctional C-N reagents have never been employed in the carboamination of cyclopropane. In this study, we use an N-heterocyclic carbene (NHC), N-benzoyl saccharin, as a bifunctional reagent and a photoredox catalyst for a dual-catalyzed 1,3-aminoacylation of cyclopropane. NHCs play multiple roles, functioning as Lewis base catalysts to activate C-N bonds, promoting the oxidative quenching process of PC*, and acting as efficient acyl radical transfer catalysts for the formation of C-C bonds. The oxidative quenching process between the excited-state PC* and acyl NHC adduct is the key to the photooxidation generality of aryl cyclopropanes.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yingtao Wu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Xiao Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Jiaqiong Sun
- Department of Chemistry, Northeast Normal University, Changchun, China.
- School of Environment, Northeast Normal University, Changchun, China.
| | - Zuxiao Zhang
- Department of Chemistry, University of Hawai'i at Mānoa. 2545 McCarthy Mall, Honolulu, HI, USA
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Qian Zhang
- Department of Chemistry, Northeast Normal University, Changchun, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai, China
| |
Collapse
|
7
|
Shimazumi R, Morimoto M, Tobisu M. KO tBu-Catalyzed Synthesis of Isoindole Derivatives from N-Benzyl Amides Bearing an Ortho Alkynyl Group via 1,2-Acyl Shift. Org Lett 2024; 26:5587-5591. [PMID: 38913806 DOI: 10.1021/acs.orglett.4c02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In this study, we present the catalytic conversion of benzylamides featuring an ortho alkynyl moiety into 1-acylisoindole derivatives via a 1,2-acyl shift. Remarkably, this transformation proceeds without the need for transition-metal catalysts; instead, KOtBu alone serves as the catalyst. This method enables the efficient synthesis of isoindoles from easily accessible amides with an atom economy of 100%.
Collapse
Affiliation(s)
- Ryoma Shimazumi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Moe Morimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Gu YW, Chen M, Deng W, Xu ZY. Computational Exploration of 1,2-Carboamine Carbonylation Catalyzed by Nickel. J Org Chem 2024; 89:4484-4495. [PMID: 38470436 DOI: 10.1021/acs.joc.3c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nickel-catalyzed carbonylation of alkenes is a stereoselective and regioselective method for the synthesis of amide compounds. Theoretical predictions with density functional theory calculations revealed the mechanism and origin of stereoselectivity and regioselectivity for the nickel-catalyzed carbonylation of norbornene. The carbonylation reaction proceeds through oxidative addition, migration insertion of alkenes, and subsequent reduction elimination to afford cis-carbonylation product. The C-N bond activation of amides is unfavorable because the oxidative addition ability of the C-C bond is stronger than that of the C-N bond. The determining step of stereoselectivity is the migratory insertion of the strained olefin. The structural analysis shows that steroselectivity is controlled by the steric hindrance of methyl groups to olefins and substituents to IMes in ligands.
Collapse
Affiliation(s)
- Yi-Wen Gu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| | - Man Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| | - Zheng-Yang Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| |
Collapse
|
9
|
Zhang R, Yu T, Dong G. Rhodium catalyzed tunable amide homologation through a hook-and-slide strategy. Science 2023; 382:951-957. [PMID: 37995236 PMCID: PMC11102777 DOI: 10.1126/science.adk1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
Preparation of diverse homologs from lead compounds has been a common and important practice in medicinal chemistry. However, homologation of carboxylic acid derivatives, particularly amides, remains challenging. Here we report a hook-and-slide strategy for homologation of tertiary amides with tunable lengths of the inserted carbon chain. Alkylation at the α-position of the amide (hook) is followed by highly selective branched-to-linear isomerization (slide) to effect amide migration to the end of the newly introduced alkyl chain; thus, the choice of alkylation reagent sets the homologation length. The key step involves a carbon-carbon bond activation process by a carbene-coordinated rhodium complex with assistance from a removable directing group. The approach is demonstrated for introduction of chains as long as 16 carbons and is applicable to derivatized carboxylic acids in complex bioactive molecules.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Tingting Yu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Malyk K, Pillai VG, Brennessel WW, Leon Baxin R, Silk ES, Nakamura DT, Kennedy CR. Distinguishing Competing Mechanistic Manifolds for C(acyl)-N Functionalization by a Ni/ N-Heterocyclic Carbene Catalyst System. JACS AU 2023; 3:2451-2457. [PMID: 37772178 PMCID: PMC10523494 DOI: 10.1021/jacsau.3c00283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023]
Abstract
Carboxylic acid derivatives are appealing alternatives to organohalides as cross-coupling electrophiles for fine chemical synthesis due to their prevalence in biomass and bioactive small molecules as well as their ease of preparation and handling. Within this family, carboxamides comprise a versatile electrophile class for nickel-catalyzed coupling with carbon and heteroatom nucleophiles. However, even state-of-the-art C(acyl)-N functionalization and cross-coupling reactions typically require high catalyst loadings and specific substitution patterns. These challenges have proven difficult to overcome, in large part due to limited experimental mechanistic insight. In this work, we describe a detailed mechanistic case study of acylative coupling reactions catalyzed by the commonly employed Ni/SIPr catalyst system (SIPr = 1,3-bis(2,6-di-isopropylphenyl)-4,5-dihydroimidazol-2-ylidine). Stoichiometric organometallic studies, in situ spectroscopic measurements, and crossover experiments demonstrate the accessibility of Ni(0), Ni(I), and Ni(II) resting states. Although in situ precatalyst activation limits reaction efficiency, the low concentrations of active, SIPr-supported Ni(0) select for electrophile-first (closed-shell) over competing nucleophile-first (open-shell) mechanistic manifolds. We anticipate that the experimental insights into the nature and controlling features of these distinct pathways will accelerate rational improvements to cross-coupling methodologies involving pervasive carboxamide substrate motifs.
Collapse
Affiliation(s)
| | | | - William W. Brennessel
- University of Rochester, Department of Chemistry, Rochester, New York 14627, United States
| | - Roberto Leon Baxin
- University of Rochester, Department of Chemistry, Rochester, New York 14627, United States
| | - Elliot S. Silk
- University of Rochester, Department of Chemistry, Rochester, New York 14627, United States
| | - Daniel T. Nakamura
- University of Rochester, Department of Chemistry, Rochester, New York 14627, United States
| | - C. Rose Kennedy
- University of Rochester, Department of Chemistry, Rochester, New York 14627, United States
| |
Collapse
|
11
|
Shimazumi R, Tanimoto R, Tobisu M. Nickel/Photoredox Dual-Catalyzed Conversion of Allyl Esters to Ketones via the Formal Deletion of Oxygen. Org Lett 2023; 25:6440-6445. [PMID: 37594903 DOI: 10.1021/acs.orglett.3c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
We report herein the catalytic conversion of allylic esters into the corresponding ketones by the formal deletion of an oxygen atom. The key to the success of the reaction is the dual use of nickel and photoredox catalysts; the former mediates C-O bond activation and C-C bond formation, while the latter is responsible for deoxygenation of the acyloxy group using PPh3 as a stoichiometric reductant. Catalytic replacement of an oxygen atom of an allyl ester with a tethered alkene is also accomplished.
Collapse
Affiliation(s)
- Ryoma Shimazumi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Riku Tanimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Pounder A, Neufeld E, Myler P, Tam W. Transition-metal-catalyzed domino reactions of strained bicyclic alkenes. Beilstein J Org Chem 2023; 19:487-540. [PMID: 37153643 PMCID: PMC10155623 DOI: 10.3762/bjoc.19.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
This review presents a comprehensive overview of transition-metal-catalyzed domino reactions of strained bicyclic alkenes, including both homo- and heterobicyclic alkenes. These compounds are important synthons in organic synthesis, providing an important platform for the construction of biologically/medicinally significant compounds which bear multiple stereocenters. The review has been divided according to the metal used in the reaction. An overview of the substrate scope, reaction conditions, and their potential applications in organic synthesis is discussed. A comprehensive outlook on the reactivity paradigms of homo- and heterobicyclic alkenes is discussed and should shed light on future directions for further development in this field.
Collapse
Affiliation(s)
- Austin Pounder
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Eric Neufeld
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Peter Myler
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - William Tam
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
13
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
14
|
Shi Y, Ji CL, Liu C. Palladium-Catalyzed Difunctionalization of Norbornenes via Arylation and Alkynylation. J Org Chem 2023; 88:261-271. [PMID: 36520655 DOI: 10.1021/acs.joc.2c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the first general and practical method for the addition of aryl halides and alkynes to norbornenes with palladium catalysis. Norbornenes have been used as the unsaturated acceptors of aryl and alkynyl groups to construct saturated bridged C-C bonds. The combination of Pd(OAc)2/PCy3HBF4 has been identified as the optimal system promoting difunctionalization of norbornenes via the C-X/C-H bond cleavage and highly selective C(sp3)-C(sp2)/C(sp3)-C(sp) bond formation. Broad substrate scope and excellent functional group tolerance have been achieved to show the high efficiency of this approach. Mechanism studies based on experiments and DFT have been performed to gain insights into the catalytic mechanism.
Collapse
Affiliation(s)
- Yijun Shi
- Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong277160, China
| | - Chong-Lei Ji
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou310027, China
| | - Chengwei Liu
- School of Chemical Engineering and Technology, Yantai Nanshan University, Longkou, Yantai265713, China.,Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai200444, China
| |
Collapse
|
15
|
Wu J, Peng Z, Shen T, Liu ZQ. Electrosynthesis of ortho‐Amino Aryl Ketones by Aerobic Electrooxidative Cleavage of the C(2)=C(3)/C(2)‐N Bonds of N‐Boc Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jintao Wu
- Nanjing University of Chinese Medicine CHINA
| | - Zehui Peng
- Nanjing University of Chinese Medicine CHINA
| | - Tong Shen
- Nanjing University of Chinese Medicine CHINA
| | - Zhong-Quan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University CHINA
| |
Collapse
|
16
|
Song LR, Li H, Wang SF, Lin JP, Huang B, Long YQ. Metal-free hypervalent iodine-promoted tandem carbonyl migration and unactivated C(Ph)-C(Alkyl) bond cleavage for quinolone scaffold synthesis. Chem Commun (Camb) 2022; 58:8340-8343. [PMID: 35758629 DOI: 10.1039/d2cc02245a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unexpected iodine(III)-mediated C(sp3)-C(sp2) bond cleavage of 3-(methylamino)-2-(2-substitutedbenzoyl)acrylates for efficient synthesis of privileged scaffold 4-quinolones was described. Notably, a wide range of alkyl groups (e.g. methyl, tert-butyl or alkyl chain) can be conveniently cleaved in this system. The detailed mechanism studies revealed that the transformation proceeded through cascade ipso-cyclization and 1,2-carbonyl migration, the smaller bond energy determined ortho C-C bond cleavage rather than C-H bond cleavage, via an enamine radical intermediate.
Collapse
Affiliation(s)
- Li-Rui Song
- School of Pharmaceutic Sciences, Soochow University, Suzhou, 215123, China. .,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - He Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Shen-Feng Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jian-Ping Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Bin Huang
- School of Pharmaceutic Sciences, Soochow University, Suzhou, 215123, China.
| | - Ya-Qiu Long
- School of Pharmaceutic Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
17
|
Ogawa S, Tobisu M. Nickel-catalyzed 1,4-aryl rearrangement of aryl N-benzylimidates via C-O and C-H bond cleavage. Chem Commun (Camb) 2022; 58:7909-7911. [PMID: 35735189 DOI: 10.1039/d2cc02355e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein that nickel-catalyzed reaction of aryl imidates bearing an N-benzyl group results in 1,4-migration of an O-aryl group via the cleavage of C-O and C-H bonds. This protocol allows for the benzylic C-H bond arylation of benzylamine building blocks using phenols as an aryl source to form elaborate diarylmethylamine derivatives.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Ping Y, Pan Q, Guo Y, Liu Y, Li X, Wang M, Kong W. Switchable 1,2-Rearrangement Enables Expedient Synthesis of Structurally Diverse Fluorine-Containing Scaffolds. J Am Chem Soc 2022; 144:11626-11637. [DOI: 10.1021/jacs.2c02487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanyuan Ping
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Qi Pan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Ya Guo
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Yongli Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
19
|
Xu L, Shi H. Cobalt-catalyzed divergent functionalization of N-sulfonyl amines via β-carbon elimination. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1251-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Long Y, Zheng Y, Xia Y, Qu L, Yang Y, Xiang H, Zhou X. Nickel-Catalyzed Synthesis of an Aryl Nitrile via Aryl Exchange between an Aromatic Amide and a Simple Nitrile. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Long
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yanling Zheng
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, P. R. China
| | - Lang Qu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yuhe Yang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Haifeng Xiang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|