1
|
Kotnik T, Debuigne A, De Winter J, Huš M, Pintar A, Kovačič S. Unlocking the potential of azide-phosphine Staudinger reaction for the synthesis of poly(arylene iminophosphorane)s and materials therefrom. Commun Chem 2025; 8:15. [PMID: 39820781 PMCID: PMC11739626 DOI: 10.1038/s42004-024-01362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025] Open
Abstract
Iminophosphoranes with the general formula (R3P═NR') have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported. The azide-phosphine Staudinger polycondensation is used, and the reaction conditions are carefully studied, including consideration of light and air, the influence of solvent and temperature, and investigation of the electronic and steric effects of multiazides. The newly defined reaction conditions appear to be highly versatile, allowing the use of both electron-rich and electron-deficient arylazides for reaction with phosphines to synthesize a library of poly(arylene iminophosphorane) networks that exhibit exceptional thermal and oxidative stability. Interestingly, despite the ylidic-form of the iminophosphorane linkage as shown by theoretical calculations, these newly developed poly(arylene-iminophosphorane) networks exhibit semiconducting properties, such as absorption band edges up to 800 nm and optical band gaps in the range of 1.70 to 2.40 eV. Finally, we demonstrate the broad applicability of these polymers by processing them into glassy films, creating foam-like structures and synthesizing metallo-polymer hybrids.
Collapse
Affiliation(s)
- Tomaž Kotnik
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Antoine Debuigne
- Chemistry Department, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege (ULiege), Quartier Agora, 13 Allée du Six Août (Bldg B6a), Sart-Tilman, B-4000, Liège, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), University of Mons-UMONS, Mons, 7000, Belgium
| | - Matej Huš
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
- Association for Technical Culture of Slovenia (ZOTKS), Zaloška 65, SI-1000, Ljubljana, Slovenia
- Institute for the Protection of Cultural Heritage of Slovenia (ZVKDS), Poljanska 40, SI-1000, Ljubljana, Slovenia
| | - Albin Pintar
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Sebastijan Kovačič
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia.
- Catalysis and Organic Synthesis Research Group, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000, Maribor, Slovenia.
| |
Collapse
|
2
|
Berl AJ, Sklar JH, Yun YJ, Kalow JA. Side-Chain Engineering in Hydrophilic n-Type π-Conjugated Polymers for Enhanced Reactivity. ACS Macro Lett 2023; 12:503-509. [PMID: 37011181 DOI: 10.1021/acsmacrolett.3c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Minor changes to side chains in conjugated polymers (CPs) can have pronounced effects on polymer properties by altering backbone planarity, solubility, and interaction with ions. Here, we report the photocontrolled synthesis of hydrophilic CPs from Grignard monomers and find that switching from alkyl to oligo(ethylene glycol) (OEG) side chains changes their photoreactivity. Specifically, installing hydrophilic side chains on the same monomer core yields higher molecular weight polymers and allows polymerization to proceed with lower-energy red light. Additionally, we discover a side chain decomposition pathway for N-OEG monomers, which are prevalent in CP research. Decomposition can be overcome by adding an extra methylene unit in the side chains without compromising polymer molecular weight or hydrophilicity. Importantly, this polymerization does not require transition metal catalysts and is a promising approach to the preparation of n-type conjugated block copolymers.
Collapse
Affiliation(s)
- Alexandra J Berl
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan H Sklar
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Young Ju Yun
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Kaiser JM, Burroughs JM, Long BK. Photoinduced Initiation of Olefin Polymerization: Enabling Spatial Control with Light. J Am Chem Soc 2022; 144:21206-21212. [DOI: 10.1021/jacs.2c08548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jordan M. Kaiser
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
4
|
Valle M, Ximenis M, Lopez de Pariza X, Chan JMW, Sardon H. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022; 61:e202203043. [PMID: 35700152 PMCID: PMC9545893 DOI: 10.1002/anie.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Organocatalysis has evolved into an effective complement to metal- or enzyme-based catalysis in polymerization, polymer functionalization, and depolymerization. The ease of removal and greater sustainability of organocatalysts relative to transition-metal-based ones has spurred development in specialty applications, e.g., medical devices, drug delivery, optoelectronics. Despite this, the use of organocatalysis and other organomediated reactions in polymer chemistry is still rapidly developing, and we envisage their rapidly growing application in nascent areas such as controlled radical polymerization, additive manufacturing, and chemical recycling in the coming years. In this Review, we describe ten trending areas where we anticipate paradigm shifts resulting from novel organocatalysts and other transition-metal-free conditions. We highlight opportunities and challenges and detail how new discoveries could lead to previously inaccessible functional materials and a potentially circular plastics economy.
Collapse
Affiliation(s)
- María Valle
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Marta Ximenis
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
- University of the Balearic Islands UIBDepartment of ChemistryCra. Valldemossa, Km 7.507122Palma de MallorcaSpain
| | - Xabier Lopez de Pariza
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Julian M. W. Chan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| |
Collapse
|
5
|
King AJ, Zhukhovitskiy AV. A Chain‐Growth Mechanism for Conjugated Polymer Synthesis Facilitated by Dinuclear Complexes with Redox‐Active Ligands. Angew Chem Int Ed Engl 2022; 61:e202206044. [DOI: 10.1002/anie.202206044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Andrew J. King
- Department of Chemistry University of North Carolina at Chapel Hill Murray Hall 121 South Road Chapel Hill NC, 27514 USA
| | - Aleksandr V. Zhukhovitskiy
- Department of Chemistry University of North Carolina at Chapel Hill Murray Hall 121 South Road Chapel Hill NC, 27514 USA
| |
Collapse
|
6
|
Sardon H, Valle M, Lopez de Pariza X, Ximenis M, Chan JM. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haritz Sardon
- University of Basque Country POLYMAT Paseo Manuel Lardizabal n 3 20018 San Sebastian SPAIN
| | - María Valle
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | | | - Marta Ximenis
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | - Julian M.W. Chan
- Agency for Science Technology and Research Institue of Chemical and Engineering Science SINGAPORE
| |
Collapse
|
7
|
King AJ, Zhukhovitskiy AV. A Chain‐Growth Mechanism for Conjugated Polymer Synthesis Facilitated by Dinuclear Complexes with Redox‐Active Ligands. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrew J. King
- Department of Chemistry University of North Carolina at Chapel Hill Murray Hall 121 South Road Chapel Hill NC, 27514 USA
| | - Aleksandr V. Zhukhovitskiy
- Department of Chemistry University of North Carolina at Chapel Hill Murray Hall 121 South Road Chapel Hill NC, 27514 USA
| |
Collapse
|
8
|
Mayhugh AL, Yadav P, Luscombe CK. Circular Discovery in Small Molecule and Conjugated Polymer Synthetic Methodology. J Am Chem Soc 2022; 144:6123-6135. [PMID: 35380440 PMCID: PMC9011355 DOI: 10.1021/jacs.1c12455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/20/2022]
Abstract
Simple and efficient methods are a key consideration for small molecule and polymer syntheses. Direct arylation polymerization (DArP) is of increasing interest for preparing conjugated polymers as an effective approach compared to conventional cross-coupling polymerizations. As DArP sees broader utilization, advancements are needed to access materials with improved properties and different monomer structures and to improve the scalability of conjugated polymer synthesis. Presented herein are considerations for developing new methods of conjugated polymer synthesis from small molecule transformations, exploring how DArP has successfully used this approach, and presenting how emerging polymerization methodologies are developing similarly. While it is common to adapt small molecule methods to polymerizations, we demonstrate the ways in which information gained from studying polymerizations can inform and inspire greater advancements in small molecule transformations. This circular approach to organic synthetic method development underlines the value of collaboration between small molecule and polymer-based synthetic research groups.
Collapse
Affiliation(s)
- Amy L. Mayhugh
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, Unites States
| | - Preeti Yadav
- pi-Conjugated
Polymers Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Christine K. Luscombe
- pi-Conjugated
Polymers Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|