1
|
Kusochek PA, Smitienko OA, Bochenkova AV. Mode-Specific Photoresponse of Retinal Protonated Schiff Base Isomers in the Reversible Photochromic Reactions of Microbial and Animal Rhodopsins. J Phys Chem B 2024; 128:12471-12482. [PMID: 39641505 DOI: 10.1021/acs.jpcb.4c06832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The primary photoisomerization reactions of the all-trans to 13-cis and 11-cis to all-trans retinal protonated Schiff base (RPSB) in microbial and animal rhodopsins, respectively, occur on a subpicosecond time scale with high quantum yields. At the same time, the isolated RPSB exhibits slower excited-state decay, in particular, in its all-trans form, and hence the interaction with the protein environment is capable of changing the time scale as well as the specificity of the reaction. Here, by using the high-level QM/MM calculations, we provide a comparative study of the primary photoresponse of cis and trans RPSB isomers in both the initial forms and first photoproducts of microbial Krokinobacter eikastus rhodopsin 2 (KR2) and Halobacterium salinarum bacteriorhodopsin (BR), and animal Bos taurus visual rhodopsin (Rho). By simulating photoabsorption band shapes of RPSB inside the proteins, we show that its photoresponse is highly mode-specific for the forward reactions, resulting in excitation of those vibrational modes that facilitate particular double-bond isomerization. The reverse reaction shows specificity only for 13-cis isomers in microbial rhodopsins, whereas the specificity is lost for all-trans RPSB in visual rhodopsin. This indicates evolutionary highly tuned 11-cis chromophore-protein interactions in visual rhodopsin. We also highlight the differences in the photoresponse of RPSB in two microbial rhodopsins and discuss the implications to their excited-state dynamics.
Collapse
Affiliation(s)
- Pavel A Kusochek
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119334, Russia
| | - Anastasia V Bochenkova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| |
Collapse
|
2
|
Rasmusssen AP, Pedersen HB, Andersen LH. Excited-state dynamics and fluorescence lifetime of cryogenically cooled green fluorescent protein chromophore anions. Phys Chem Chem Phys 2023. [PMID: 38048068 DOI: 10.1039/d3cp04696f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Time-resolved action spectroscopy together with a fs-pump probe scheme is used in an electrostatic ion-storage ring to address lifetimes of specific vibrational levels in electronically excited states. Here we specifically consider the excited-state lifetime of cryogenically cooled green fluorescent protein (GFP) chromophore anions which is systematically measured across the S0-S1 spectral region (450-482 nm). A long lifetime of 5.2 ± 0.3 ns is measured at the S0-S1 band origin. When exciting higher vibrational levels in S1, the lifetime changes dramatically. It decreases by more than two orders of magnitude in a narrow energy region ∼250 cm-1 (31 meV) above the 0-0 transition. This is attributed to the opening of internal conversion over an excited-state energy barrier. The applied experimental technique provides a new way to uncover even small energy barriers, which are crucial for excited-state dynamics.
Collapse
Affiliation(s)
- Anne P Rasmusssen
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
| | - Henrik B Pedersen
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
| | - Lars H Andersen
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
| |
Collapse
|
3
|
Zeng X, Yang M, Liu H, Zhang Z, Hu Y, Shi J, Wang ZH. Light-driven micro/nanomotors in biomedical applications. NANOSCALE 2023; 15:18550-18570. [PMID: 37962424 DOI: 10.1039/d3nr03760f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanotechnology brings hope for targeted drug delivery. However, most current drug delivery systems use passive delivery strategies with limited therapeutic efficiency. Over the past two decades, research on micro/nanomotors (MNMs) has flourished in the biomedical field. Compared with other driven methods, light-driven MNMs have the advantages of being reversible, simple to control, clean, and efficient. Under light irradiation, the MNMs can overcome several barriers in the body and show great potential in the treatment of various diseases, such as tumors, and gastrointestinal, cardiovascular and cerebrovascular diseases. Herein, the classification and mechanism of light-driven MNMs are introduced briefly. Subsequently, the applications of light-driven MNMs in overcoming physiological and pathological barriers in the past five years are highlighted. Finally, the future prospects and challenges of light-driven MNMs are discussed as well. This review will provide inspiration and direction for light-driven MNMs to overcome biological barriers in vivo and promote the clinical application of light-driven MNMs in the biomedical field.
Collapse
Affiliation(s)
- Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Ma Z, Chen L, Xu C, Fournier JA. Two-Dimensional Infrared Spectroscopy of Isolated Molecular Ions. J Phys Chem Lett 2023; 14:9683-9689. [PMID: 37871134 DOI: 10.1021/acs.jpclett.3c02661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Two-dimensional infrared (2D IR) spectroscopy of mass-selected, cryogenically cooled molecular ions is presented. Nonlinear response pathways, encoded in the time-domain photodissociation action response of weakly bound N2 messenger tags, were isolated using pulse shaping techniques following excitation with four collinear ultrafast IR pulses. 2D IR spectra of Re(CO)3(CH3CN)3+ ions capture off-diagonal cross-peak bleach signals between the asymmetric and symmetric carbonyl stretching transitions. These cross peaks display intensity variations as a function of pump-probe delay time due to coherent coupling between the vibrational modes. Well-resolved 2D IR features in the congested fingerprint region of protonated caffeine (C8H10N4O2H+) are also reported. Importantly, intense cross-peak signals were observed at 3 ps waiting time, indicating that tag-loss dynamics are not competing with the measured nonlinear signals. These demonstrations pave the way for more precise studies of molecular interactions and dynamics that are not easily obtainable with current condensed-phase methodologies.
Collapse
Affiliation(s)
- Zifan Ma
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Liangyi Chen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Chuzhi Xu
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Ostrovsky MA, Smitienko OA, Bochenkova AV, Feldman TB. Similarities and Differences in Photochemistry of Type I and Type II Rhodopsins. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1528-1543. [PMID: 38105022 DOI: 10.1134/s0006297923100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 12/19/2023]
Abstract
The diversity of the retinal-containing proteins (rhodopsins) in nature is extremely large. Fundamental similarity of the structure and photochemical properties unites them into one family. However, there is still a debate about the origin of retinal-containing proteins: divergent or convergent evolution? In this review, based on the results of our own and literature data, a comparative analysis of the similarities and differences in the photoconversion of the rhodopsin of types I and II is carried out. The results of experimental studies of the forward and reverse photoreactions of the bacteriorhodopsin (type I) and visual rhodopsin (type II) rhodopsins in the femto- and picosecond time scale, photo-reversible reaction of the octopus rhodopsin (type II), photovoltaic reactions, as well as quantum chemical calculations of the forward photoreactions of bacteriorhodopsin and visual rhodopsin are presented. The issue of probable convergent evolution of type I and type II rhodopsins is discussed.
Collapse
Affiliation(s)
- Mikhail A Ostrovsky
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| | | | - Tatiana B Feldman
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| |
Collapse
|
6
|
Regen-Pregizer BL, Ozcelik A, Mayer P, Hampel F, Dube H. A photochemical method to evidence directional molecular motions. Nat Commun 2023; 14:4595. [PMID: 37524701 PMCID: PMC10390485 DOI: 10.1038/s41467-023-40190-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Light driven synthetic molecular motors represent crucial building blocks for advanced molecular machines and their applications. A standing challenge is the development of very fast molecular motors able to perform rotations with kHz, MHz or even faster frequencies. Central to this challenge is the direct experimental evidence of directionality because analytical methods able to follow very fast motions rarely deliver precise geometrical insights. Here, a general photochemical method for elucidation of directional motions is presented. In a macrocyclization approach the molecular motor rotations are restricted and forced to proceed in two separate ~180° rotation-photoequilibria. Therefore, all four possible photoinduced rotation steps (clockwise and counterclockwise directions) can be quantified. Comparison of the corresponding quantum yields to the unrestricted motor delivers direct evidence for unidirectionality. This method can be used for any ultrafast molecular motor even in cases where no high energy intermediates are present during the rotation cycle.
Collapse
Affiliation(s)
- Benjamin Lukas Regen-Pregizer
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Ani Ozcelik
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Peter Mayer
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Frank Hampel
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
7
|
Ashworth EK, Langeland J, Stockett MH, Lindkvist TT, Kjær C, Bull JN, Nielsen SB. Cryogenic Fluorescence Spectroscopy of Ionic Fluorones in Gaseous and Condensed Phases: New Light on Their Intrinsic Photophysics. J Phys Chem A 2022; 126:9553-9563. [PMID: 36529970 DOI: 10.1021/acs.jpca.2c07231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescence spectroscopy of gas-phase ions generated through electrospray ionization is an emerging technique able to probe intrinsic molecular photophysics directly without perturbations from solvent interactions. While there is ample scope for the ongoing development of gas-phase fluorescence techniques, the recent expansion into low-temperature operating conditions accesses a wealth of data on intrinsic fluorophore photophysics, offering enhanced spectral resolution compared with room-temperature measurements, without matrix effects hindering the excited-state dynamics. This perspective reviews current progress on understanding the photophysics of anionic fluorone dyes, which exhibit an unusually large Stokes shift in the gas phase, and discusses how comparison of gas- and condensed-phase fluorescence spectra can fingerprint structural dynamics. The capacity for temperature-dependent measurements of both fluorescence emission and excitation spectra helps establish the foundation for the use of fluorone dyes as fluorescent tags in macromolecular structure determination. We suggest ideas for technique development.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691Stockholm, Sweden
| | | | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - James N Bull
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | | |
Collapse
|
8
|
Borji S, Vahedpour M. Quantum chemical design of near-infrared retinal-based pigments and evaluating their vibronic/electronic properties. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|