1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Van Hoof M, Mayer RJ, Moran J, Lebœuf D. Triflic Acid-Catalyzed Dehydrative Amination of 2-Arylethanols with Weak N-Nucleophiles in Hexafluoroisopropanol. Angew Chem Int Ed Engl 2025; 64:e202417089. [PMID: 39431992 DOI: 10.1002/anie.202417089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
The catalytic deoxyamination of readily available 2-arylethanols offers an appealing, simple, and straightforward means of accessing β-(hetero)arylethylamines of biological interest. Yet, it currently represents a great challenge to synthetic chemistry. In most cases, the alcohol has to be either pre-activated in situ or converted into a reactive carbonyl intermediate, limiting the substrate scope for some methods. Examples of direct dehydrative amination of 2-arylethanols are thus still scarce. Here, we describe a catalytic protocol based on the synergy of triflic acid and hexafluoroisopropanol, which enables the direct and stereospecific amination of a broad array of 2-arylethanols, and does not require any pre-activation of the alcohol. This approach yields high value-added products incorporating sulfonamide, amide, urea, and aniline functionalities. In addition, this approach was applied to the sulfidation of 2-arylethanols. Mechanistic experiments and DFT computations indicate the formation of phenonium ions as key intermediates in the reaction.
Collapse
Affiliation(s)
- Max Van Hoof
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Robert J Mayer
- Technical University of Munich, School of Natural Sciences, Department Chemie, 85748, Garching, Germany
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), CNRS UMR 7042, Université de Strasbourg, Université de Haute-Alsace, 25 rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
3
|
Santiago J, Orłowska K, Ociepa M, Gryko D. Aryl versus Alkyl Redox-Active Diazoacetates ─ Light-Induced C-H Insertion or 1,2-Rearrangement. Org Lett 2023; 25:6267-6271. [PMID: 37607356 PMCID: PMC10476266 DOI: 10.1021/acs.orglett.3c02055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 08/24/2023]
Abstract
Diazo compounds with redox-active leaving groups are versatile reagents for orthogonal functionalizations, previously utilized in the Rh-catalyzed synthesis of highly substituted cyclopropanes. Photochemical activation of aryl-substituted diazoacetates generates carbenes, whereas redox-active esters can furnish C-radicals via the photoexcitation of EDA complexes. However, the photochemical behavior of these two functionalities, while present in one molecule, remains to be defined. We demonstrate that under light irradiation, reactions occur only on the diazo moiety, leaving the NHPI functionality intact. Not only aryl- but also alkyl-substituted NHPI diazoacetates are activated by blue light; either C-H insertion or the hydrogen/carbon 1,2-rearrangement occurs depending on the aryl/alkyl group.
Collapse
Affiliation(s)
- João
V. Santiago
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| | - Katarzyna Orłowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| | - Michał Ociepa
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| |
Collapse
|
4
|
Hoogesteger RH, Murdoch N, Cordes DB, Johnston CP. Cobalt-Catalyzed Wagner-Meerwein Rearrangements with Concomitant Nucleophilic Hydrofluorination. Angew Chem Int Ed Engl 2023; 62:e202308048. [PMID: 37409777 DOI: 10.1002/anie.202308048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
We report a cobalt-catalyzed Wagner-Meerwein rearrangement of gem-disubstituted allylarenes that generates fluoroalkane products with isolated yields up to 84 %. Modification of the counteranion of the N-fluoropyridinium oxidant suggests the substrates undergo nucleophilic fluorination during the reaction. Subjecting the substrates to other known metal-mediated hydrofluorination procedures did not lead to observable 1,2-aryl migration. Thus, indicating the unique ability of these cobalt-catalyzed conditions to generate a sufficiently reactive electrophilic intermediate capable of promoting this Wagner-Meerwein rearrangement.
Collapse
Affiliation(s)
- Reece H Hoogesteger
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Nicola Murdoch
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Craig P Johnston
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
5
|
Bisht R, Popescu MV, He Z, Ibrahim AM, Crisenza GEM, Paton RS, Procter DJ. Metal-Free Arylation of Benzothiophenes at C4 by Activation as their Benzothiophene S-Oxides. Angew Chem Int Ed Engl 2023; 62:e202302418. [PMID: 37000422 PMCID: PMC10953450 DOI: 10.1002/anie.202302418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/01/2023]
Abstract
Benzothiophenes, activated by oxidation to the corresponding S-oxides, undergo C-H/C-H-type coupling with phenols to give C4 arylation products. While an electron-withdrawing group at C3 of the benzothiophene is important, the process operates without a directing group and a metal catalyst, thus rendering it compatible with sensitive functionalities-e.g. halides and formyl groups. Quantum chemical calculations suggest a formal stepwise mechanism involving heterolytic cleavage of an aryloxysulfur species to give a π-complex of the corresponding benzothiophene and a phenoxonium cation. Subsequent addition of the phenoxonium cation to the C4 position of the benzothiophene is favored over the addition to C3; Fukui functions predict that the major regioisomer is formed at the more electron-rich position between C3 and C4. Varied selective manipulation of the benzothiophene products showcase the synthetic utility of the metal-free arylation process.
Collapse
Affiliation(s)
- Ranjana Bisht
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Mihai V. Popescu
- Department of ChemistryColorado State UniversityCenter AveFort CollinsCO80523USA
| | - Zhen He
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ameer M. Ibrahim
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Robert S. Paton
- Department of ChemistryColorado State UniversityCenter AveFort CollinsCO80523USA
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
6
|
Wang F, Nishimoto Y, Yasuda M. Lewis Acid‐Catalyzed Diastereoselective C−C Bond Insertion of Diazo Esters into Secondary Benzylic Halides for the Synthesis of α,β‐Diaryl‐β‐haloesters. Angew Chem Int Ed Engl 2022; 61:e202204462. [DOI: 10.1002/anie.202204462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Fei Wang
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University Suita Osaka 565-0871 Japan
| | - Makoto Yasuda
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
7
|
Sharma R, Mondal A, Samanta A, Biswas N, Das B, Srimani D. Well‐Defined Ni−SNS Complex Catalysed Borrowing Hydrogenative α‐Alkylation of Ketones and Dehydrogenative Synthesis of Quinolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rahul Sharma
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Avijit Mondal
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Arup Samanta
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Nandita Biswas
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Babulal Das
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|
8
|
Wang F, Nishimoto Y, Yasuda M. Lewis Acid‐Catalyzed Diastereoselective C–C Bond Insertion of Diazo Esters into Secondary Benzylic Halides for the Synthesis of α,β‐Diaryl‐β‐haloesters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fei Wang
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Applied Chemistry JAPAN
| | | | - Makoto Yasuda
- Osaka University Department of Applied Chemistry, Graduate School of Engineering 2-1 Yamadaoka, Suita 565-0871 Osaka JAPAN
| |
Collapse
|
9
|
Tang L, Zang Y, Guo W, Han Z, Huang H, Sun J. Reductive Opening of Oxetanes Catalyzed by Frustrated Lewis Pairs: Unexpected Aryl Migration via Neighboring Group Participation. Org Lett 2022; 24:3259-3264. [PMID: 35467358 DOI: 10.1021/acs.orglett.2c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B(C6F5)3 was found to catalyze an unusual double reduction of oxetanes by hydrosilane with aryl migration via neighboring group participation. Control experiments suggested that the phenonium ion serves as the key intermediate. Minor modification of this protocol also led to simple hydrosilylative opening of oxetanes.
Collapse
Affiliation(s)
- Luning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Zang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wengang Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.,Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.,Shenzhen Research Institute, HKUST, No. 9 Yuexing First Road, Shenzhen 518057, China
| |
Collapse
|
10
|
Wang F, Nishimoto Y, Yasuda M. Indium-Catalyzed Formal Carbon-Halogen Bond Insertion: Synthesis of α-Halo-α,α-disubstituted Esters from Benzylic Halides and Diazo Esters. Org Lett 2022; 24:1706-1710. [PMID: 35191713 DOI: 10.1021/acs.orglett.2c00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-carbon-unit insertion into carbon-halogen (C-X) bonds accompanied by the formation of a new C-X bond and carbon-chain elongation is a powerful synthetic method of complex organohalides. Herein, we developed an indium trihalide catalyzed formal insertion of diazo esters into a C-X (X = Cl, Br, I) bond. In the present system, the reactions of α-aryl diazo esters with benzylic chlorides, bromides, and iodides yielded α-chloro, α-bromo, and α-iodo esters, respectively.
Collapse
Affiliation(s)
- Fei Wang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Jin L, Zhou X, Zhao Y, Guo J, Stephan DW. Catalyst-dependent chemoselective insertion of diazoalkanes into N-H\C-H\O-H\C-O bonds of 2-hydroxybenzothiazoles. Org Biomol Chem 2022; 20:7781-7786. [DOI: 10.1039/d2ob01048h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of chemoselective insertions of diazoalkanes with 2-hydroxybenzothiazoles is challenging. Herein, the chemoselective N-H, O-H, C-O or C-H bond insertions of diazoalkanes with 2-hydroxybenzothiazoles are achieved using B(C6F5)3, Rh2(OAc)4...
Collapse
|