1
|
Shan WL, Si N, Xu MT, Chen ZY, Zhao G, Tang H, Jin GX. One-Step Directed Self-Assembly of Molecular Closed Four-Link Chains and Borromean Links. Angew Chem Int Ed Engl 2025; 64:e202501965. [PMID: 39980201 DOI: 10.1002/anie.202501965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Despite substantial advancements in the synthesis of mechanically interlocked molecules (MIMs), the efficient construction of higher order links remains a formidable challenge. Herein, we report the highly efficient one-step directed construction of a series of unprecedented molecular closed four-link chains (84 1 metalla-links), achieved through the synergistic assembly of coordination-driven and aromatic stacking interactions involving binuclear rhodium/iridium precursors and bis-dentate benzothiadiazole derivative ligands. Meanwhile, modulating the substituent positions of the pyridine groups in the ligand resulted in a change in topological structure, leading to the formation of two molecular Borromean links (6 2 3 ${6_2^3 }$ metalla-links). The molecular configurations of the abovementioned metalla-links were clearly identified through mass spectrometry, NMR, and single-crystal X-ray diffraction. Furthermore, structural transformation between the molecular Borromean links and corresponding monocycles was achieved through concentration effects, as validated by solution-state NMR spectroscopy investigations.
Collapse
Affiliation(s)
- Wei-Long Shan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Nian Si
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Meng-Ting Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Zhi-Yang Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Gen Zhao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Haitong Tang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Dang LL, Zheng J, Tian D, Chai YH, Wu TT, Yang JX, Wang P, Zhao Y, Aznarez F, Ma LF. Highly Selective Construction of Unique Cyclic [4]Catenanes Induced by Multiple Noncovalent Interactions. Angew Chem Int Ed Engl 2025; 64:e202422444. [PMID: 39714342 DOI: 10.1002/anie.202422444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The synthesis of high-ordered mechanically interlocked supramolecular structures is an extremely challenging topic. Only two linear [4]catenanes have been reported so far and there is no defined strategy to obtain cyclic [4]catenane. Herein, two unprecedented cyclic [4]catenanes, 1 and 2, were prepared in high yields. The syntheses rely on the strategic selection of naphthalenediimide (NDI) based Cp*Rh/Ir building blocks E1/E2 (Cp*=pentamethyl-cyclopentadienyl) and nonlinear diimidazole ligand precursor L1, exhibiting large conjugate plane, appropriate coordination angles, and freely rotating imidazole units, thereby enabling multiple π⋅⋅⋅π stacking interactions to maintain the supramolecular structures. The use of other Cp*Rh building blocks E3, E4 or E5 featuring slightly shorter metal-to-metal distances than E1/E2 and different chemical properties led to the formation of a complex 3 and two metallamacrocycles 4 or 5, respectively. The structures of these assemblies were confirmed by X-ray crystallographic analysis, ESI-TOF-MS and NMR spectroscopy. Complex 1, exhibiting a broad-band absorption in the UV/Vis to NIR regions and a remarkable photothermal conversion was thereafter used to build the new 1 membrane. The solar power-induced water steam generation performance of 1 membrane was investigated, reaching a value of 2.37 kg ⋅ m-2 ⋅ h-1, making it suitable for collection of fresh water via desalination and wastewater.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Jie Zheng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
- College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yin-Hang Chai
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Tian-Tian Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Jian-Xin Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Peng Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Francisco Aznarez
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
- College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
3
|
Goldup SM. The End of the Beginning of Mechanical Stereochemistry. Acc Chem Res 2024; 57:1696-1708. [PMID: 38830116 PMCID: PMC11191403 DOI: 10.1021/acs.accounts.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
ConspectusStereochemistry has played a key role in the development of synthetic chemistry for the simple reason that the function and properties of most molecules, from medicine to materials science, depend on their shape and thus the stereoisomer used. However, despite the potential for rotaxanes and catenanes to display unusual forms of stereochemistry being identified as early as 1961, this aspect of the mechanical bond remained underexplored and underexploited; until 2014 it was only possible to access chiral rotaxanes and catenanes whose stereoisomerism is solely attributable to the mechanical bond using chiral stationary phase high performance liquid chromatography, which limited their production on scale and thus inhibited the investigation of their properties and applications. Furthermore, the stereogenic units of such molecules and analogues were often poorly described, which made it hard to fully articulate both what had been achieved in the field and what problems were left to solve. Relatively recently, methods to access rotaxanes and catenanes that display mechanical stereochemistry selectively have been developed, making these intriguing structures available for study in a range of prototypical applications including catalysis, sensing, and as chiral luminophores.In this Account, we briefly discuss the history of mechanical stereochemistry, beginning in 1961 when the potential for mechanical stereoisomerism was first identified, before defining how mechanical stereochemistry arises from a structural point of view. Building on this, using simple stereochemical arguments, we confirm that the complete set of unique stereogenic units of two-component rotaxanes and catenanes have finally been identified and categorized unambiguously, with the last being identified only in 2024. After pausing to discuss some of the stereochemical curiosities that arise when molecules contain both covalent and mechanical stereogenic units, and the potential for stereoisomerism to arise due to co-conformational movement, we use our stereochemical framework to summarize our efforts to develop conceptually general approaches to [2]catenanes and [2]rotaxanes containing all of the possible mechanical stereogenic units. In particular, we highlight how the nature of a mechanical stereogenic unit affects the available strategies for their stereoselective synthesis. We finish by highlighting recent prototypical chemical applications of interlocked molecules that rely on their mechanical stereochemistry, before discussing future directions and challenges.Taken together, we propose that the transition of such molecules from being hard to make and poorly described, to being available in high stereopurity using clearly articulated methodological and stereochemical concepts suggests that the field is finally maturing. Thus, we are now coming to the end of the beginning of mechanical stereochemistry. The stage is now set for such molecules to play a functional role in a range of areas, indeed in any chemical or physical application where control over molecular shape is required.
Collapse
Affiliation(s)
- Stephen M. Goldup
- School of Chemistry, University
of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
4
|
Shan WL, Hou HH, Si N, Wang CX, Yuan G, Gao X, Jin GX. Selective Construction and Structural Transformation of Homogeneous Linear Metalla[4]catenane and Metalla[2]catenane Assemblies. Angew Chem Int Ed Engl 2024; 63:e202402198. [PMID: 38319045 DOI: 10.1002/anie.202402198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/07/2024]
Abstract
Although the synthesis of mechanically interlocked molecules has been extensively researched, selectively constructing homogeneous linear [4]catenanes remains a formidable challenge. Here, we selectively constructed a homogeneous linear metalla[4]catenane in a one-step process through the coordination-driven self-assembly of a bidentate benzothiadiazole derivative ligand and a binuclear half-sandwich rhodium precursor. The formation of metalla[4]catenanes was facilitated by cooperative interactions between strong sandwich-type π-π stacking and non-classical hydrogen bonds between the components. Moreover, by modulating the aromatic substituents on the binuclear precursor, two homogeneous metalla[2]catenanes were obtained. The molecular structures of these metallacatenanes were unambiguously characterized by single-crystal X-ray diffraction analysis. Additionally, reversible structural transformation between metal-catenanes and the corresponding metallarectangles could be achieved by altering their concentration, as confirmed by mass spectrometry and NMR spectroscopy studies.
Collapse
Affiliation(s)
- Wei-Long Shan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Huan-Huan Hou
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Nian Si
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Cai-Xia Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| |
Collapse
|
5
|
Savoini A, Gallagher PR, Saady A, Goldup SM. The Final Stereogenic Unit of [2]Rotaxanes: Type 2 Geometric Isomers. J Am Chem Soc 2024; 146:8472-8479. [PMID: 38499387 PMCID: PMC10979452 DOI: 10.1021/jacs.3c14594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Mechanical stereochemistry arises when the interlocking of stereochemically trivial covalent subcomponents results in a stereochemically complex object. Although this general concept was identified in 1961, the stereochemical description of these molecules is still under development to the extent that new forms of mechanical stereochemistry are still being identified. Here, we present a simple analysis of rotaxane and catenane stereochemistry that allowed us to identify the final missing simple mechanical stereogenic unit, an overlooked form of rotaxane geometric isomerism, and demonstrate its stereoselective synthesis.
Collapse
Affiliation(s)
- Andrea Savoini
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Peter R. Gallagher
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Abed Saady
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Stephen M. Goldup
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
6
|
Wang Y, Liu T, Zhang YY, Li B, Tan L, Li C, Shen XC, Li J. Cross-catenation between position-isomeric metallacages. Nat Commun 2024; 15:1363. [PMID: 38355599 PMCID: PMC10866959 DOI: 10.1038/s41467-024-45681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
The study of cross-catenated metallacages, which are complex self-assembly systems arising from multiple supramolecular interactions and hierarchical assembly processes, is currently lacking but could provide facile insights into achieving more precise control over low-symmetry/high-complexity hierarchical assembly systems. Here, we report a cross-catenane formed between two position-isomeric Pt(II) metallacages in the solid state. These two metallacages formed [2]catenanes in solution, whereas a 1:1 mixture selectively formed a cross-catenane in crystals. Varied temperature nuclear magnetic resonance experiments and time-of-flight mass spectra are employed to characterize the cross-catenation in solutions, and the dynamic library of [2]catenanes are shown. Additionally, we searched for the global-minimum structures of three [2]catenanes and re-optimized the low-lying structures using density functional theory calculations. Our results suggest that the binding energy of cross-catenanes is significantly larger than that of self-catenanes within the dynamic library, and the selectivity in crystallization of cross-catenanes is thermodynamic. This study presents a cross-catenated assembly from different metallacages, which may provide a facile insight for the development of low-symmetry/high-complexity self-assemble systems.
Collapse
Affiliation(s)
- Yiliang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Taotao Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yang-Yang Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518005, PR China
| | - Bin Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, PR China
| | - Liting Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Chunju Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, PR China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518005, PR China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, 100084, Beijing, PR China
| |
Collapse
|
7
|
Yang Z, Wu J, Li K, Zhou X, Lu D, Zhang L. Sliding Dynamics of a Small Charged Ring Chain on the Diblock Polyelectrolyte in Poly[2]catenane in the Presence of Counterions. J Phys Chem B 2023; 127:10189-10200. [PMID: 37734004 DOI: 10.1021/acs.jpcb.3c04107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In this study, we investigate the sliding dynamics of small charged ring chains along the rigid central cyclic diblock polyelectrolyte of AnBn in radial charged poly[2]catenane in the presence of counterions using molecular dynamics simulations and the Lifson-Jackson formula, and our aim is to study the effects of electrostatical interaction strength, the size of the charged small ring chain, and the rigid block length of the diblock polyelectrolyte on the sliding dynamics of a small ring chain threaded on the rigid diblock polyelectrolyte. The mean-square displacement g3(t) of a small ring chain sliding along the rigid diblock polyelectrolyte of A10B10 exhibits oscillating behavior at short time scales for the moderate electrostatical interaction strength, while for the weak or strong electrostatic interactions, it is normal subdiffusion at short time scales. For n = 1, the diffusion coefficient D of the small ring chain sliding along the rigid diblock polyelectrolyte of A1B1 decreases monotonically as the relative electrostatic interaction strength A increases from A = 0.25-4. However, for n ≠ 1, the diffusion coefficient D of the small ring chain sliding along the rigid diblock polyelectrolyte of AnBn first decreases and then increases with the increase of A, and the nonmonotonous relationship between D and A becomes more obvious for larger n. In view of the free energy potential, the sliding diffusion of a small ring chain is governed by both the width of the free energy potential well and the height of the free energy potential barrier. According to the potential of mean force (PMF) of the small ring chain sliding along the rigid diblock polyelectrolyte, we find that our results are in good agreement with the theoretical analysis using the Lifson-Jackson formula. These results may help us to understand the diffusion motion of a ring chain in radial poly[n]catenanes from a fundamental point of view and control the sliding dynamics in molecular designs.
Collapse
Affiliation(s)
- Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaxin Wu
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ke Li
- College of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaolin Zhou
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Dan Lu
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| | - Linxi Zhang
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Liu J, Wu M, Wu L, Liang Y, Tang ZB, Jiang L, Bian L, Liang K, Zheng X, Liu Z. Infinite Twisted Polycatenanes. Angew Chem Int Ed Engl 2023; 62:e202314481. [PMID: 37794215 DOI: 10.1002/anie.202314481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Poly[n]catenanes have exceptional mechanical bonding properties that give them tremendous potential for use in the development of molecular machines and soft materials. Synthesizing these compounds has, however, proven to be a formidable challenge. Herein, we describe a concise method for the construction of twisted polycatenanes. Our approach involves using preorganized double helicates as templates, linked crosswise in a linear fashion by either silver ions or triple bonds. By using this approach, we successfully synthesized twisted polycatenanes with both coordination and covalent bonding employing Ag(I) ions and ethynylene units, respectively, as the linkages and leveraging the same Ag(I)-templated double helicate in both cases. Synthesis with Ag(I) ions formed a single-crystalline one-dimensional (1D) coordination poly[n]catenane, and synthesis using ethynylene units generated 1D fibers which self-assembled with solvents to form a gel. Our results confirm the potential of multi-stranded metallohelicates for creating sophisticated mechanically interlocked molecules and polymers, which could pave the way for exploration in the realms of molecular nanotopology and materials design.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Chemistry, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Mengqi Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Lin Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Yimin Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zheng-Bin Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Liang Jiang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Lifang Bian
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Kejiang Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Xiaorui Zheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zhichang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| |
Collapse
|
9
|
Phukon U, Kedia M, Shankar B, Sathiyendiran M. Rhenium-Pyrazolyl-Based Figure-Eight- and Z-Shaped Metallocycles: Self-Assembly, Solid-State Structures, Dynamic Properties in Solution, and Competitive Ligand-Induced Supramolecular Transformations into Rhenium-Pyridyl/-Benzimidazolyl/-Phosphine-Based Metallocycles/Acyclic Complexes. ACS OMEGA 2023; 8:41773-41784. [PMID: 37969972 PMCID: PMC10633831 DOI: 10.1021/acsomega.3c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Rhenium(I)tricarbonyl core-based heteroleptic "figure-eight"- and Z-shaped metallocycles (1a-4a) of the general formula fac-[{(CO)3Re(μ-L)Re(CO)3}2(dppz)2] were self-assembled from Re2(CO)10, H2-L (H2-L = 5,8-dihydroxy-1,4-naphthaquinone (H2-dhnq) for 1a; 1,4-dihydroxy-9,10-anthraquinone (H2-dhaq) for 2a; 6,11-dihydroxy-5,12-naphthacenedione (H2-dhnd) for 3a; 2,2'-bisbenzimidazole (H2-bbim) for 4a), and bis(4-((pyrazolyl)methyl)phenylmethane) (dppz) via one-pot coordination-driven synthetic approach. The molecular structures of 1a and 4a were unambiguously confirmed by single-crystal X-ray diffraction (SC-XRD) methods. The metallocycles in the DMSO solution exist as an acyclic dinuclear-DMSO adduct of the general formula fac-[{(CO)3Re(μ-L)Re(CO)3}(DMSO)2] (1b, L = dhnq; 2b, L = dhaq; 3b, L = dhnd; 4b, L = bbim) and dppz, which are in dynamic equilibrium. The dynamic behavior of the rhenium-pyrazolyl bond in the solution state was effectively utilized to transform metallocycles 1a-4a into pyridyl/benzimidazolyl/phosphine donor-based heteroleptic metallocycles and acyclic dinuclear complexes (4-13). These include tetranuclear rectangles fac-[{(CO)3Re(μ-L)Re(CO)3}2(4,4'-bpy)2] (4 and 11, L = dhaq for 4 and bbim for 11), dinuclear metallocycles fac-[{(CO)3Re(μ-L)Re(CO)3}(dpbim)] (5-7 and 12; L = dhnq for 5, dhaq for 6, dhnd for 7, and bbim for 12), and dinuclear acyclic complexes fac-[{(CO)3Re(μ-L)Re(CO)3}(PTA)2] (8-10 and 13; L = dhnq for 8, dhaq for 9, dhnd for 10, and bbim for 13). These transformations were achieved through component-induced supramolecular reactions while treating with competitive ligands 4,4'-bipyridine (4,4'-bpy), bis(4-((1H-benzoimidazole-1-yl)methyl)phenyl)methane (dpbim), and 1,3,5-triaza-7-phosphaadamantane (PTA). The reaction mixture in the solution was analyzed using NMR and electrospray ionization mass spectrometry (ESI-MS) analysis. Additionally, crystal structures of 4, 6, and 13, which were obtained in the mixture of the solutions, were determined, providing unequivocal evidence for the occurrence of supramolecular transformation within the system. The results reveal that the size of the chelating ligand and the pyrazolyl donor angle of the ditopic ligand play crucial roles in determining the resulting solid-state metallacyclic architecture in these synthetic combinations. The dynamic behavior of the rhenium-pyrazolyl bond in the metallocycles can be utilized to transform into other metallocycles and acyclic complexes using suitable competing ligands via ligand-induced supramolecular transformations.
Collapse
Affiliation(s)
- Upasana Phukon
- School
of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Moon Kedia
- School
of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Bhaskaran Shankar
- Department
of Chemistry, Thiagarajar College of Engineering, Madurai 625 015, India
| | | |
Collapse
|
10
|
Lu X, Huang JJ, Chen T, Zheng J, Liu M, Wang XY, Li YX, Niu X, Dang LL. A Coordination-Driven Self-Assembly and NIR Photothermal Conversion Study of Organometallic Handcuffs. Molecules 2023; 28:6826. [PMID: 37836669 PMCID: PMC10574444 DOI: 10.3390/molecules28196826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their fascinating topological structures and application prospects, coordination supramolecular complexes have continuously been studied by scientists. However, the controlled construction and property study of organometallic handcuffs remains a significant and challenging research subject in the area of supramolecular chemistry. Hence, a series of tetranuclear organometallic and heterometallic handcuffs bearing different size and metal types were rationally designed and successfully synthesized by utilizing a quadridentate pyridyl ligand (tetra-(3-pyridylphenyl)ethylene) based on three Cp*Rh (Cp* = η5-C5Me5) fragments bearing specific longitudinal dimensions and conjugated planes. These results were determined with single-crystal X-ray diffraction analysis technology, ESI-MS NMR spectroscopy, etc. Importantly, the photoquenching effect of Cp* groups and the discrepancy of intermolecular π-π stacking interactions between building block and half-sandwich fragments promote markedly different photothermal conversion results. These results will further push the synthesis of topological structures and the development of photothermal conversion materials.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jing-Jing Huang
- Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jie Zheng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Ming Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xin-Yi Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Yu-Xin Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Science, Shihezi University, Shihezi 832003, China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
11
|
Chen T, Zhao Y, Dang LL, Zhang TT, Lu XL, Chai YH, Lu MY, Aznarez F, Ma LF. Self-Assembly and Photothermal Conversion of MetallaRussian Doll and Metalla[2]catenanes Induced via Multiple Stacking Interactions. J Am Chem Soc 2023; 145:18036-18047. [PMID: 37459092 DOI: 10.1021/jacs.3c05720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A variety of organometallic supramolecular architectures have been constructed over the past decades and their properties were also explored via different strategies. However, the synthesis of metalla-Russian doll is still a fascinating challenge. Herein, a series of new coordination supramolecular complexes, including a metalla-Russian doll, metalla[2]catenanes, and metallarectangles, were synthesized by using meticulously selected Cp*Rh (Cp* = η5-C5Me5) building units (E1, E2, and E3) and three rigid anthracylpyridine ligands (L1, L2, and L3) via a self-assembly strategy. While the combination of the short ligand L1 and E1 or E2 generated two metallarectangles, the longer ligand L2 containing an alkynyl group resulted in two new [2]catenanes, most likely due to which the strong electron-donating effect of alkynyl groups causes self-accumulation. Interestingly, an unusual Russian doll assembly was obtained through the reaction of L3 and E3 based on sextuple π···π stacking interactions. Furthermore, the dynamic structural conversion between [2]catenanes and the corresponding metallarectangles could be observed through concentration-, solvent-, and guest-induced effects. The [2]catenane complexes 4b displayed efficient photothermal conversion efficiency in solution (20.2%), in comparison with other organometallic macrocycles. We believe that π···π stacking interactions generate active nonradiative pathways and promote radiative photodeactivation pathways. This study proves the versatility of half-sandwich building units, not only to build complicated supramolecular topologies but also in effective functional materials for various appealing applications.
Collapse
Affiliation(s)
- Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xiao-Li Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yin-Hang Chai
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ming-Yu Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Francisco Aznarez
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
12
|
Chen Q, Li Z, Lei Y, Chen Y, Tang H, Wu G, Sun B, Wei Y, Jiao T, Zhang S, Huang F, Wang L, Li H. The sharp structural switch of covalent cages mediated by subtle variation of directing groups. Nat Commun 2023; 14:4627. [PMID: 37532710 PMCID: PMC10397198 DOI: 10.1038/s41467-023-40255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
It is considered a more formidable task to precisely control the self-assembled products containing purely covalent components, due to a lack of intrinsic templates such as transition metals to suppress entropy loss during self-assembly. Here, we attempt to tackle this challenge by using directing groups. That is, the self-assembly products of condensing a 1:2 mixture of a tetraformyl and a biamine can be precisely controlled by slightly changing the substituent groups in the aldehyde precursor. This is because different directing groups provide hydrogen bonds with different modes to the adjacent imine units, so that the building blocks are endowed with totally different conformations. Each conformation favors the formation of a specific product that is thus produced selectively, including chiral and achiral cages. These results of using a specific directing group to favor a target product pave the way for accomplishing atom economy in synthesizing purely covalent molecules without relying on toxic transition metal templates.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhaoyong Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China
| | - Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Bin Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China
| | - Yuxi Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Songna Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Feihe Huang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| |
Collapse
|
13
|
Jiang Y, Zeng ZY, Jin T, Peng Z, Xu L. Precision syntheses of molecular necklaces based on coordination interactions. Dalton Trans 2023; 52:2915-2923. [PMID: 36794450 DOI: 10.1039/d2dt03594d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Molecular necklaces (MNs) are mechanically interlocked molecules that have attracted considerable attention due to their delicate structures and potential applications, such as in the syntheses of polymeric materials and DNA cleavage. However, complex and lengthy synthetic routes have limited development of further applications. Owing to their dynamic reversibility, strong bond energy and high orientation, coordination interactions were employed to synthesize MNs. In this review, progress in the coordination-based MNs has been summarized, with emphasis on design strategies and potential applications based on coordination interactions.
Collapse
Affiliation(s)
- Yefei Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China.
| | - Zhi-Yong Zeng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China.
| | - Tongxia Jin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China. .,Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Wuhu 241001, P. R. China
| | - Zhiyong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China.
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China. .,Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Wuhu 241001, P. R. China
| |
Collapse
|
14
|
Zhang HN, Feng HJ, Lin YJ, Jin GX. Cation-Templated Assembly of 6 13 and 6 23 Metalla-Links. J Am Chem Soc 2023; 145:4746-4756. [PMID: 36716227 DOI: 10.1021/jacs.2c13416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Facilitated by multiple stacking interactions between components, two kinds of metalla-links containing molecular Borromean rings (623 links) and head-to-tail cyclic [3]catenanes (613 links), as isomers, were constructed in high yield by introducing tri-μ-methoxyl-dinuclear complexes [(Cp*M)2(μ-OCH3)3][OTf] (M = RhIII or IrIII, Cp* = η5-pentamethylcyclopentadienyl, OTf = triflate) as unusual cationic guests during coordination-driven assembly. The topology of these intricate structures was controlled by strategically selecting two dipyridyl ligands that differ in their coordination orientations, as evidenced by X-ray crystallography and electrospray ionization-time-of-flight/mass spectrometry analysis. The behavior of the abovementioned metalla-links in solution was monitored and further studied by the detailed NMR techniques.
Collapse
Affiliation(s)
- Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
15
|
Cui Z, Mu QS, Gao X, Jin GX. Stereoselective Construction of Chiral Linear [3]Catenanes and [2]Catenanes. J Am Chem Soc 2023; 145:725-731. [PMID: 36550680 DOI: 10.1021/jacs.2c12027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have successfully constructed a chiral linear [3]catenane stereoselectively by coordination-driven self-assembly using a ditopic monodentate ligand containing l-valine residues with a binuclear half-sandwich organometallic rhodium(III) unit. Furthermore, by increasing the steric hindrance of the amino acid residues in the ligand, a chiral [2]catenane was obtained, which can be regarded as the factor catenane of the chiral linear [3]catenane from a topological viewpoint. Notably, the resulting molecular catenanes all exhibit complex coconformational mechanical helical chirality and planar chirality ascribed to the point chirality of the ligands. Linear [3]catenanes and [2]catenanes with the opposite chirality can be obtained by using ligands containing the corresponding d-amino acid residues, which have been confirmed by single-crystal X-ray diffraction, NMR, mass spectrometry, and circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qiu-Shui Mu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xiang Gao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
16
|
Chakraborty D, Saha R, Clegg JK, Mukherjee PS. Selective separation of planar and non-planar hydrocarbons using an aqueous Pd 6 interlocked cage. Chem Sci 2022; 13:11764-11771. [PMID: 36320911 PMCID: PMC9580621 DOI: 10.1039/d2sc04660a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) find multiple applications ranging from fabric dyes to optoelectronic materials. Hydrogenation of PAHs is often employed for their purification or derivatization. However, separation of PAHs from their hydrogenated analogues is challenging because of their similar physical properties. An example of such is the separation of 9,10-dihydroanthracene from phenanthrene/anthracene which requires fractional distillation at high temperature (∼340 °C) to obtain pure anthracene/phenanthrene in coal industry. Herein we demonstrate a new approach for this separation at room temperature using a water-soluble interlocked cage (1) as extracting agent by host-guest chemistry. The cage was obtained by self-assembly of a triimidazole donor L·HNO3 with cis-[(tmeda)Pd(NO3)2] (M) [tmeda = N,N,N',N'-tetramethylethane-1,2-diamine]. 1 has a triply interlocked structure with an inner cavity capable of selectively binding planar aromatic guests.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
17
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
18
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
19
|
Ma L, Li Y, Li X, Zhang L, Sun L, Han Y. A Molecular “
A
‐Type” Tangled Metallocube. Angew Chem Int Ed Engl 2022; 61:e202208376. [DOI: 10.1002/anie.202208376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Li‐Li Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Le Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
20
|
Ma LL, Li Y, Li X, Zhang L, Sun LY, Han YF. A Molecular “A‐Type” Tangled Metallocube. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Li-Li Ma
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Yang Li
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Xin Li
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Le Zhang
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Li-Ying Sun
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Ying-Feng Han
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 Xi'an CHINA
| |
Collapse
|
21
|
Zhang X, Liu K, Zhao J, Zhang Z, Luo Z, Guo Y, Zhang H, Wang Y, Bai R, Zhao D, Yang X, Liu Y, Yan X. Mechanically Interlocked Aerogels with Densely Rotaxanated Backbones. J Am Chem Soc 2022; 144:11434-11443. [PMID: 35696720 DOI: 10.1021/jacs.2c04717] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanically interlocked molecules are considered promising candidates for the construction of self-adaptive materials by virtue of their fascinating structural and dynamic features. However, it is still a great challenge to fabricate such materials with higher complexity and richer functionality. Herein, we propose the concept of mechanically interlocked aerogels (MIAs) in which the three-dimensional (3D) porous frameworks are made of dense mechanically interlocked modules, thereby enabling the integration of mechanical adaptivity and multifunctionality in a single entity. The lightweight MIA monoliths possess a good appearance and hierarchical meso- and submicron-pores. Profiting from the combination of dynamic mechanical bonds and porous skeletons of aerogels, our MIAs are not only mechanically robust (average Young's modulus = 5.80 GPa and specific modulus = 130.5 kN·m/kg) but also showcase favorable mechanical adaptivity and responsiveness under external stimuli. Taking advantage of the above integrative merits, we demonstrate the multifunctionality of our MIAs in terms of iodine uptake, thermal insulation, and selective adsorption of organic dyes. Our work opens the door to designing intelligent aerogels with delicate topological chemical structures while facilitating the development of mechanically interlocked materials.
Collapse
Affiliation(s)
- Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuchen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
22
|
Bai S, Wang LF, Wu ZW, Feng T, Han YF. Supramolecular-controlled regioselective photochemical [4+4] cycloaddition within Cp*Rh-based metallarectangles. Dalton Trans 2022; 51:8743-8748. [DOI: 10.1039/d2dt01094a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemical reactions are vital synthetic means for the synthesis of natural products as well as highly strained molecules. However, it remains an inherent challenge to control the chemo- and regioselectivity...
Collapse
|
23
|
Dang LL, Zhang TT, Chen T, Zhao Y, Zhao CC, Aznarez F, Sun KX, Ma LF. Coordination assembly and NIR photothermal conversion of Cp*Rh-based supramolecular topologies based on distinct conjugated systems. Org Chem Front 2022. [DOI: 10.1039/d2qo01107g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The selective synthesis and transformation of Borromean rings and [2]catenane, are presented based on linear/aromatic conjugated ligands through different stacking interactions, promoting nonradiative transitions and trigger photothermal conversion.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Chen-Chen Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Francisco Aznarez
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Kai-Xin Sun
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|