1
|
Malinowski D, He G, Salcido-Santacruz B, Majumder K, Kwon J, Sfeir MY, Campos LM. Exciton and charge transfer processes within singlet fission micelles. Chem Sci 2025:d5sc01479d. [PMID: 40336998 PMCID: PMC12053457 DOI: 10.1039/d5sc01479d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025] Open
Abstract
Multiexciton (ME) mechanisms hold great promise for enhancing energy conversion efficiency in optoelectronic and photochemical systems. In singlet fission (SF), the generation of two triplet excitons from a single photon provides a route to circumvent thermal energy losses and organic systems offer opportunities to modulate ME dynamics. However, the practical implementation of SF-based materials is hindered by poor triplet exciton mobility, interfacial recombination losses, and complex dynamics at heterogeneous interfaces. While studies of interfacial SF dynamics have demonstrated the potential for efficient charge and exciton transfer, experimental conditions and design of interfaces vary widely. To address this, we explore polymer-based self-assembled architectures as a tunable platform for studying mesoscale SF interfacial dynamics of (multi)exciton transfer, as well as electron and hole transfer. Specifically, we design amphiphilic block copolymers (BCPs) incorporating pendent tetracene moieties that self-assemble into micellar nanoparticles, placing the tetracenes in the amorphous core. These micelles provide a controlled environment to systematically introduce "dopants" to investigate interfacial dynamics. Importantly, the use of solvents within the micelle core can be also applied to impart polymer chain mobility.
Collapse
Affiliation(s)
- Daniel Malinowski
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Guiying He
- Department of Physics, Graduate Center, City University of New York New York NY 10016 USA
- Photonics Initiative, Advanced Science Research Center, City University of New York New York NY 10031 USA
| | - Bernardo Salcido-Santacruz
- Department of Chemistry, Graduate Center, City University of New York New York NY 10016 USA
- Photonics Initiative, Advanced Science Research Center, City University of New York New York NY 10031 USA
| | - Kanad Majumder
- Department of Chemistry, Columbia University New York New York 10027 USA
- Photonics Initiative, Advanced Science Research Center, City University of New York New York NY 10031 USA
| | - Junho Kwon
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York New York NY 10016 USA
- Department of Chemistry, Graduate Center, City University of New York New York NY 10016 USA
- Photonics Initiative, Advanced Science Research Center, City University of New York New York NY 10031 USA
| | - Luis M Campos
- Department of Chemistry, Columbia University New York New York 10027 USA
| |
Collapse
|
2
|
Gorman J, Hart SM, John T, Castellanos MA, Harris D, Parsons MF, Banal JL, Willard AP, Schlau-Cohen GS, Bathe M. Sculpting photoproducts with DNA origami. Chem 2024; 10:1553-1575. [PMID: 38827435 PMCID: PMC11138899 DOI: 10.1016/j.chempr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Natural light-harvesting systems spatially organize densely packed dyes in different configurations to either transport excitons or convert them into charge photoproducts, with high efficiency. In contrast, artificial photosystems like organic solar cells and light-emitting diodes lack this fine structural control, limiting their efficiency. Thus, biomimetic multi-dye systems are needed to organize dyes with the sub-nanometer spatial control required to sculpt resulting photoproducts. Here, we synthesize 11 distinct perylene diimide (PDI) dimers integrated into DNA origami nanostructures and identify dimer architectures that offer discrete control over exciton transport versus charge separation. The large structural-space and site-tunability of origami uniquely provides controlled PDI dimer packing to form distinct excimer photoproducts, which are sensitive to interdye configurations. In the future, this platform enables large-scale programmed assembly of dyes mimicking natural systems to sculpt distinct photophysical products needed for a broad range of optoelectronic devices, including solar energy converters and quantum information processors.
Collapse
Affiliation(s)
- Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria A. Castellanos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Molly F. Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James L. Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
3
|
Wang Z, Xie X, Ma H. Simultaneous Intra- and Intermolecular Singlet Fission in Bipentacene Macrocycle Aggregates. J Phys Chem Lett 2024; 15:3523-3530. [PMID: 38522085 DOI: 10.1021/acs.jpclett.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Singlet fission (SF) is a process where a singlet state splits into two triplet states, which is essential for enhancing optoelectronic devices. Macrocyclic structures allow for precise control of chromophore orientation and facilitate singlet fission in solutions. However, the behavior of these structures in thin films, crucial for solid-state device optimization, remains underexplored. This study examines the aggregation and singlet fission processes of bipentacene macrocycles (BPc) in thin films using molecular dynamics simulations and electronic structure calculations. Findings indicate that BPc aggregates more rapidly with less chloroform, aligning parallel to the substrate. Intramolecular singlet fission (iSF) rates are rarely changed during evaporation, but the efficiency of intermolecular singlet fission (xSF) improves due to the increase in packing domains, suggesting that orderly crystal domains are not necessary for device efficiency. This opens avenues for varied device designs and traditional solution-based methods for optimal device development.
Collapse
Affiliation(s)
- Zhangxia Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoyu Xie
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Greißel PM, Thiel D, Gotfredsen H, Chen L, Krug M, Papadopoulos I, Miskolzie M, Torres T, Clark T, Brøndsted Nielsen M, Tykwinski RR, Guldi DM. Intramolecular Triplet Diffusion Facilitates Triplet Dissociation in a Pentacene Hexamer. Angew Chem Int Ed Engl 2024; 63:e202315064. [PMID: 38092707 DOI: 10.1002/anie.202315064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 01/26/2024]
Abstract
Triplet dynamics in singlet fission depend strongly on the strength of the electronic coupling. Covalent systems in solution offer precise control over such couplings. Nonetheless, efficient free triplet generation remains elusive in most systems, as the intermediate triplet pair 1 (T1 T1 ) is prone to triplet-triplet annihilation due to its spatial confinement. In the solid state, entropically driven triplet diffusion assists in the spatial separation of triplets, resulting in higher yields of free triplets. Control over electronic coupling in the solid state is, however, challenging given its sensitivity to molecular packing. We have thus developed a hexameric system (HexPnc) to enable solid-state-like triplet diffusion at the molecular scale. This system is realized by covalently tethering three pentacene dimers to a central subphthalocyanine scaffold. Transient absorption spectroscopy, complemented by theoretical structural optimizations and steady-state spectroscopy, reveals that triplet diffusion is indeed facilitated due to intramolecular cluster formation. The yield of free triplets in HexPnc is increased by a factor of up to 14 compared to the corresponding dimeric reference (DiPnc). Thus, HexPnc establishes crucial design aspects for achieving efficient triplet dissociation in strongly coupled systems by providing avenues for diffusive separation of 1 (T1 T1 ), while, concomitantly, retaining strong interchromophore coupling which preserves rapid formation of 1 (T1 T1 ).
Collapse
Affiliation(s)
- Phillip M Greißel
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Dominik Thiel
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Henrik Gotfredsen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
- Current address: Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Lan Chen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marcel Krug
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Tomás Torres
- Department of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
- IMDEA Nanociencia, C/Faraday 9, Cantoblanco, 28049, Madrid, Spain
| | - Timothy Clark
- Department of Chemistry and Pharmacy &, Computer-Chemie-Center (CCC), Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
5
|
Yan Y, Brega V, Pina MM, Thomas SW. Electronic effects of conjugated aryl groups on the properties and reactivities of di(arylethynyl)tetracenes. Org Biomol Chem 2024; 22:289-295. [PMID: 38054249 DOI: 10.1039/d3ob01601c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The photochemical oxidations of acenes can cause challenges with their optoelectronic applications, such as singlet fission and organic transistors. At the same time, these reactions form the basis for many luminescent sensing schemes for 1O2. While diethynyl substitution is arguably the most widely adopted of the various substitution strategies to control oxidation and also improve solubility and processability of long acenes, the extent to which differences between the alkyne groups can influence key properties of long acenes remains largely unknown. This report therefore describes the effects of various arenes and heteroarenes on the electronic structures, optical properites, and reactivity with singlet oxygen for eight 5,12-di(arylethynyl)tetracenes. The fluorescence spectra of these tetracenes span approximately 100 nm, while their observed rate constants for reaction with singlet oxygen correlates strongly with the HOMO level, spanning one order of magnitude. They are also amenable to fluorescent materials that respond ratiometrically to singlet oxygen. Therefore, electronic effects of groups directly conjugated to ethynylacenes offer a useful chemical space for rational acene design.
Collapse
Affiliation(s)
- Yu Yan
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Valentina Brega
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Manuel M Pina
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Samuel W Thomas
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
6
|
Wang K, Chen X, Xu J, Peng S, Wu D, Xia J. Recent Advance in the Development of Singlet-Fission-Capable Polymeric Materials. Macromol Rapid Commun 2024; 45:e2300241. [PMID: 37548255 DOI: 10.1002/marc.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Singlet fission (SF) is a spin-allowed process in which a higher-energy singlet exciton is converted into two lower-energy triplet excitons via a triplet pair intermediate state. Implementing SF in photovoltaic devices holds the potential to exceed the Shockley-Queisser limit of conventional single-junction solar cells. Although great progress has been made in exploiting the underlying mechanism of SF over the past decades, the scope of materials capable of SF, particularly polymeric materials, remains poor. SF-capable polymer is one of the most potential candidates in the implementation of SF into devices due to their distinct superiorities in flexibility, solution processability and self-assembly behavior. Notably, recent advancements have demonstrated high-performance SF in isolated donor-acceptor (D-A) copolymer chains. This review provides an overview of recent progress in the development of SF-capable polymeric materials, with a significant focus on elucidating the mechanisms of SF in polymers and optimizing the design strategies for SF-capable polymers. Additionally, the paper discusses the challenges encountered in this field and presents future perspectives. It is expected that this comprehensive review will offer valuable insights into the design of novel SF-capable polymeric materials, further advancing the potential for SF implementation in photovoltaic devices.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
7
|
He G, Churchill EM, Parenti KR, Zhang J, Narayanan P, Namata F, Malkoch M, Congreve DN, Cacciuto A, Sfeir MY, Campos LM. Promoting multiexciton interactions in singlet fission and triplet fusion upconversion dendrimers. Nat Commun 2023; 14:6080. [PMID: 37770472 PMCID: PMC10539328 DOI: 10.1038/s41467-023-41818-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
Singlet fission and triplet-triplet annihilation upconversion are two multiexciton processes intimately related to the dynamic interaction between one high-lying energy singlet and two low-lying energy triplet excitons. Here, we introduce a series of dendritic macromolecules that serve as platform to study the effect of interchromophore interactions on the dynamics of multiexciton generation and decay as a function of dendrimer generation. The dendrimers (generations 1-4) consist of trimethylolpropane core and 2,2-bis(methylol)propionic acid (bis-MPA) dendrons that provide exponential growth of the branches, leading to a corona decorated with pentacenes for SF or anthracenes for TTA-UC. The findings reveal a trend where a few highly ordered sites emerge as the dendrimer generation grows, dominating the multiexciton dynamics, as deduced from optical spectra, and transient absorption spectroscopy. While the dendritic structures enhance TTA-UC at low annihilator concentrations in the largest dendrimers, the paired chromophore interactions induce a broadened and red-shifted excimer emission. In SF dendrimers of higher generations, the triplet dynamics become increasingly dominated by pairwise sites exhibiting strong coupling (Type II), which can be readily distinguished from sites with weaker coupling (Type I) by their spectral dynamics and decay kinetics.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Emily M Churchill
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Jocelyn Zhang
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Faridah Namata
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Michael Malkoch
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Angelo Cacciuto
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA.
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
8
|
Kim J, Teo HT, Hong Y, Liau YC, Yim D, Han Y, Oh J, Kim H, Chi C, Kim D. Leveraging Charge-Transfer Interactions in Through-Space-Coupled Pentacene Dendritic Oligomer for Singlet Exciton Fission. J Am Chem Soc 2023; 145:19812-19823. [PMID: 37656929 DOI: 10.1021/jacs.3c05660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Singlet exciton fission in organic chromophores has received much attention during the past decade. Inspired by numerous spectroscopic studies in the solid state, there have been vigorous efforts to study singlet exciton fission dynamics in covalently bonded oligomers, which aims to investigate underlying mechanisms of this intriguing process in simplified model systems. In terms of through-space orbital interactions, however, most of covalently bonded pentacene oligomers studied so far fall into weakly interacting systems since they manifest chain-like structures based on various (non)conjugated linkers. Therefore, it remains as a compelling question to answer how through-space interactions in the solid state intervene this photophysical process since it is hypersensitive to displacements and orientations between neighboring chromophores. Herein, as one of experimental studies to answer this question, we introduced a tight-packing dendritic structure whose mesityl-pentacene constituents are coupled via moderate through-space orbital interactions. Based on the comparison with a suitably controlled dendritic structure, which is in a weak coupling regime, important mechanistic viewpoints are tackled such as configurational mixings between singlet, charge-transfer, and triplet pair states and the role of chromophore multiplication. We underscore that our through-space-coupled dendritic oligomer in a quasi-intermediate coupling regime provides a hint on the interplay of multiconfigurational excited-states, which might have drawn complexity in singlet exciton fission kinetics throughout numerous solid-state morphologies.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hao Ting Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Yuan Cheng Liau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Daniel Yim
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Juwon Oh
- Department of ICT Environmental Health System and Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - Hyungjun Kim
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
9
|
Nakamura S, Sakai H, Fuki M, Ooie R, Ishiwari F, Saeki A, Tkachenko NV, Kobori Y, Hasobe T. Thermodynamic Control of Intramolecular Singlet Fission and Exciton Transport in Linear Tetracene Oligomers. Angew Chem Int Ed Engl 2023; 62:e202217704. [PMID: 36578175 DOI: 10.1002/anie.202217704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
We newly synthesized a series of homo- and hetero-tetracene (Tc) oligomers to propose a molecular design strategy for the efficient exciton transport in linear oligomers by promoting correlated triplet pair (TT) dissociation and controlling sequential exciton trapping process of individual doubled triplet excitons (T+T) by intramolecular singlet fission. First, entropic gain effects on the number of Tc units are examined by comparing Tc-homo-oligomers [(Tc)n : n=2, 4, 6]. Then, a comparison of (Tc)n and Tc-hetero-oligomer [TcF3 -(Tc)4 -TcF3 ] reveals the vibronic coupling effect for entropic gain. Observed entropic effects on the T+T formation indicated that the exciton migration is rationalized by number of possible TT states increased both by increasing the number of Tc units and by the vibronic levels at the terminal TcF3 units. Finally, we successfully observed high-yield exciton trapping process (trapped triplet yield: ΦTrT =176 %).
Collapse
Affiliation(s)
- Shunta Nakamura
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Rikuto Ooie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
10
|
Wang L, Jiang W, Guo S, Wang S, Zhang M, Liu Z, Wang G, Miao Y, Yan L, Shao JY, Zhong YW, Liu Z, Zhang D, Fu H, Yao J. Robust singlet fission process in strong absorption π-expanded diketopyrrolopyrroles. Chem Sci 2022; 13:13907-13913. [PMID: 36544745 PMCID: PMC9710207 DOI: 10.1039/d2sc05580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Singlet fission (SF) has drawn tremendous attention as a multiexciton generation process that could mitigate the thermal loss and boost the efficiency of solar energy conversion. Although a SF-based solar cell with an EQE above 100% has already been fabricated successfully, the practical efficiency of the corresponding devices is plagued by the limited scope of SF materials. Therefore, it is of great importance to design and develop new SF-capable compounds aiming at practical device application. In the current contribution, via a π-expanded strategy, we presented a new series of robust SF chromophores based on polycyclic DPP derivatives, Ex-DPPs. Compared to conventional DPP molecules, Ex-DPPs feature strong absorption with a fivefold extinction coefficient, good molecular rigidity to effectively restrain non-radiative deactivation, and an expanded π-skeleton which endow them with well-suited intermolecular packing geometries for achieving efficient SF process. These results not only provide a new type of high-efficiency SF chromophore but also address some basic guidelines for the design of potential SF materials targeting practical light harvesting applications.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Wenlin Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of SciencesBeijing100190China
| | - Shaoting Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Senhao Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Mengfan Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Zuyuan Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Guoliang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Yanqin Miao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of SciencesBeijing100190China,State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou UniversityLanzhou 730000China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of SciencesBeijing100190China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal UniversityBeijing 100048China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| |
Collapse
|
11
|
He G, Parenti KR, Campos LM, Sfeir MY. Direct Exciton Harvesting from a Bound Triplet Pair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203974. [PMID: 35973675 DOI: 10.1002/adma.202203974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Singlet fission is commonly defined as the generation of two triplet excitons from a single absorbed photon. However, ambiguities within this definition arise due to the complexity of the various double triplet states that exist in SF chromophores and the corresponding interconversion processes. To clarify this process, singlet fission is frequently depicted as sequential two-step conversion in which a singlet exciton decays into a bound triplet-pair biexciton state that dissociates into two "free" triplet excitons. However, this model discounts the potential for direct harvesting from the coupled biexciton state. Here, it is demonstrated that individual triplet excitons can be extracted directly from a bound triplet pair. It is demonstrated that due to the requirement for geminate triplet-triplet annihilation in intramolecular singlet fission compounds, unique spectral and kinetic signatures can be used to quantify triplet-pair harvesting yields. An internal quantum efficiency for triplet exciton transfer from the triplet pair of >50%, limited only by the solubility of the compounds is achieved. The harvesting process is not dependent on the net multiplicity of the triplet-pair state, suggesting that an explicit, independent dissociation step is not a requirement for using triplet pairs to do chemical or electrical work.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| |
Collapse
|