1
|
Wu L, Zhang J, Cornwell‐Arquitt R, Hendrix DA, Radakovic A, Szostak JW. Selective Nonenzymatic Formation of Biologically Common RNA Hairpins. Angew Chem Int Ed Engl 2025; 64:e202417370. [PMID: 39568250 PMCID: PMC11773311 DOI: 10.1002/anie.202417370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
The prebiotic formation of RNA building blocks is well-supported experimentally, yet the emergence of sequence- and structure-specific RNA oligomers is generally attributed to biological selection via Darwinian evolution rather than prebiotic chemical selectivity. In this study, we used deep sequencing to investigate the partitioning of randomized RNA overhangs into ligated products by either splinted ligation or loop-closing ligation. Comprehensive sequence-reactivity profiles revealed that loop-closing ligation preferentially yields hairpin structures with loop sequences UNNG, CNNG, and GNNA (where N represents A, C, G, or U) under competing conditions. In contrast, splinted ligation products tended to be GC rich. Notably, the overhang sequences that preferentially partition to loop-closing ligation significantly overlap with the most common biological tetraloops, whereas the overhangs favoring splinted ligation exhibit an inverse correlation with biological tetraloops. Applying these sequence rules enables the high-efficiency assembly of functional ribozymes from short RNAs without template inhibition. Our findings suggest that the RNA tetraloop structures that are common in biology may have been predisposed and prevalent in the prebiotic pool of RNAs, prior to the advent of Darwinian evolution. We suggest that the one-step prebiotic chemical process of loop-closing ligation could have favored the emergence of the first RNA functions.
Collapse
Affiliation(s)
- Long‐Fei Wu
- Howard Hughes Medical InstituteThe University of ChicagoChicagoIL 60637USA
- Current address: Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | | | | | - David A. Hendrix
- Department of Biochemistry and BiophysicsOregon State UniversityUSA
- School of Electrical Engineering and Computer ScienceOregon State UniversityUSA
| | | | - Jack W. Szostak
- Howard Hughes Medical InstituteThe University of ChicagoChicagoIL 60637USA
| |
Collapse
|
2
|
Mejdrová I, Węgrzyn E, Carell T. Step-by-Step Towards Biological Homochirality - from Prebiotic Randomness To Perfect Asymmetry. Chem Asian J 2025; 20:e202401074. [PMID: 39400505 DOI: 10.1002/asia.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
The history of life's formation and the origin of its stereochemistry are nearly as multifaceted as the life itself. In this review, we focus on analyzing the step-by-step path leading to what we can define as "life" in parallel to what we know about the emergence of enantiomeric imbalance and subsequent transition to full homochirality. We start at the level of assembly of the building blocks of life from inorganic molecules and build up to the polymerization and formation of nucleic acids and peptides. We report and analyze different theories at various stages of this development and try to elucidate the most plausible theory.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ewa Węgrzyn
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
3
|
Reußwig SG, Richert C. Ribosome-Free Translation up to Pentapeptides via Template Walk on RNA Sequences. Angew Chem Int Ed Engl 2024; 63:e202410317. [PMID: 38967604 DOI: 10.1002/anie.202410317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The origin of translation is one of the most difficult problems of molecular evolution. Identifying molecular systems that translate an RNA sequence into a peptide sequence in the absence of ribosomes and enzymes is a challenge. Recently, single-nucleotide translation via coupling of 5' phosphoramidate-linked amino acids to 2'/3'-aminoacyl transfer-NMPs, as directed by the sequence of an RNA template, was demonstrated for three of the four canonical nucleotides. How single-nucleotide translation could be expanded to include all four bases and to produce longer peptides without translocation along the template strand remained unclear. Using transfer strands of increasing length containing any of the four bases that interrogate adjacent positions along the template, we now show that pentapeptides can be produced in coupling reactions and subsequent hydrolytic release in situ. With 2'/3'-aminoacylated mono-, di-, tri- and tetranucleotides we thus show how efficient translation can be without biomacromolecules.
Collapse
Affiliation(s)
- Sabrina G Reußwig
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
4
|
Kenchel J, Vázquez-Salazar A, Wells R, Brunton K, Janzen E, Schultz KM, Liu Z, Li W, Parker ET, Dworkin JP, Chen IA. Prebiotic chiral transfer from self-aminoacylating ribozymes may favor either handedness. Nat Commun 2024; 15:7980. [PMID: 39266567 PMCID: PMC11393417 DOI: 10.1038/s41467-024-52362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Modern life is essentially homochiral, containing D-sugars in nucleic acid backbones and L-amino acids in proteins. Since coded proteins are theorized to have developed from a prebiotic RNA World, the homochirality of L-amino acids observed in all known life presumably resulted from chiral transfer from a homochiral D-RNA World. This transfer would have been mediated by aminoacyl-RNAs defining the genetic code. Previous work on aminoacyl transfer using tRNA mimics has suggested that aminoacylation using D-RNA may be inherently biased toward reactivity with L-amino acids, implying a deterministic path from a D-RNA World to L-proteins. Using a model system of self-aminoacylating D-ribozymes and epimerizable activated amino acid analogs, we test the chiral selectivity of 15 ribozymes derived from an exhaustive search of sequence space. All of the ribozymes exhibit detectable selectivity, and a substantial fraction react preferentially to produce the D-enantiomer of the product. Furthermore, chiral preference is conserved within sequence families. These results are consistent with the transfer of chiral information from RNA to proteins but do not support an intrinsic bias of D-RNA for L-amino acids. Different aminoacylation structures result in different directions of chiral selectivity, such that L-proteins need not emerge from a D-RNA World.
Collapse
Affiliation(s)
- Josh Kenchel
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| | - Reno Wells
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Krishna Brunton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Evan Janzen
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Kyle M Schultz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ziwei Liu
- Department of Earth Sciences, University of Cambridge, Cambridge, USA
- MRC - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Weiwei Li
- Bren School of Environmental Management, University of California, Santa Barbara, CA, USA
| | - Eric T Parker
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Irene A Chen
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Radakovic A, Lewicka A, Todisco M, Aitken HRM, Weiss Z, Kim S, Bannan A, Piccirilli JA, Szostak JW. A potential role for RNA aminoacylation prior to its role in peptide synthesis. Proc Natl Acad Sci U S A 2024; 121:e2410206121. [PMID: 39178230 PMCID: PMC11363276 DOI: 10.1073/pnas.2410206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024] Open
Abstract
Coded ribosomal peptide synthesis could not have evolved unless its sequence and amino acid-specific aminoacylated tRNA substrates already existed. We therefore wondered whether aminoacylated RNAs might have served some primordial function prior to their role in protein synthesis. Here, we show that specific RNA sequences can be nonenzymatically aminoacylated and ligated to produce amino acid-bridged stem-loop RNAs. We used deep sequencing to identify RNAs that undergo highly efficient glycine aminoacylation followed by loop-closing ligation. The crystal structure of one such glycine-bridged RNA hairpin reveals a compact internally stabilized structure with the same eponymous T-loop architecture that is found in many noncoding RNAs, including the modern tRNA. We demonstrate that the T-loop-assisted amino acid bridging of RNA oligonucleotides enables the rapid template-free assembly of a chimeric version of an aminoacyl-RNA synthetase ribozyme. We suggest that the primordial assembly of amino acid-bridged chimeric ribozymes provides a direct and facile route for the covalent incorporation of amino acids into RNA. A greater functionality of covalently incorporated amino acids could contribute to enhanced ribozyme catalysis, providing a driving force for the evolution of sequence and amino acid-specific aminoacyl-RNA synthetase ribozymes in the RNA World. The synthesis of specifically aminoacylated RNAs, an unlikely prospect for nonenzymatic reactions but a likely one for ribozymes, could have set the stage for the subsequent evolution of coded protein synthesis.
Collapse
Affiliation(s)
- Aleksandar Radakovic
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL60637
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Anna Lewicka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL60637
| | - Marco Todisco
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL60637
| | - Harry R. M. Aitken
- HHMI, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Zoe Weiss
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Shannon Kim
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL60637
| | - Abdullah Bannan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Joseph A. Piccirilli
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL60637
| | - Jack W. Szostak
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL60637
| |
Collapse
|
6
|
Węgrzyn E, Mejdrová I, Carell T. Gradual evolution of a homo-l-peptide world on homo-d-configured RNA and DNA. Chem Sci 2024; 15:d4sc03384a. [PMID: 39129775 PMCID: PMC11306956 DOI: 10.1039/d4sc03384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Modern life requires the translation of genetic information - encoded by nucleic acids - into proteins, which establishes the essential link between genotype and phenotype. During translation, exclusively l-amino acids are loaded onto transfer RNA molecules (tRNA), which are then connected at the ribosome to give homo-l-proteins. In contrast to the homo-l-configuration of amino acids and proteins, the oligonucleotides involved are all d-configured (deoxy)ribosides. Previously, others and us have shown that if peptide synthesis occurs at homo d-configured oligonucleotides, a pronounced l-amino acid selectivity is observed, which reflects the d-sugar/l-amino acid world that evolved in nature. Here we further explore this astonishing selectivity. We show a peptide-synthesis/recapture-cycle that can lead to a gradual enrichment and hence selection of a homo-l-peptide world. We show that even if peptides with a mixed l/d-stereochemistry are formed, they are not competitive against the homo-l-counterparts. We also demonstrate that this selectivity is not limited to RNA but that peptide synthesis on DNA features the same l-amino acid preference. In total, the data bring us a step closer to an understanding of how homochirality on Earth once evolved.
Collapse
Affiliation(s)
- Ewa Węgrzyn
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| | - Ivana Mejdrová
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| | - Thomas Carell
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| |
Collapse
|
7
|
Su M, Roberts SJ, Sutherland JD. Initial Amino Acid:Codon Assignments and Strength of Codon:Anticodon Binding. J Am Chem Soc 2024; 146:12857-12863. [PMID: 38676654 PMCID: PMC11082893 DOI: 10.1021/jacs.4c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
The ribosome brings 3'-aminoacyl-tRNA and 3'-peptidyl-tRNAs together to enable peptidyl transfer by binding them in two major ways. First, their anticodon loops are bound to mRNA, itself anchored at the ribosomal subunit interface, by contiguous anticodon:codon pairing augmented by interactions with the decoding center of the small ribosomal subunit. Second, their acceptor stems are bound by the peptidyl transferase center, which aligns the 3'-aminoacyl- and 3'-peptidyl-termini for optimal interaction of the nucleophilic amino group and electrophilic ester carbonyl group. Reasoning that intrinsic codon:anticodon binding might have been a major contributor to bringing tRNA 3'-termini into proximity at an early stage of ribosomal peptide synthesis, we wondered if primordial amino acids might have been assigned to those codons that bind the corresponding anticodon loops most tightly. By measuring the binding of anticodon stem loops to short oligonucleotides, we determined that family-box codon:anticodon pairings are typically tighter than split-box codon:anticodon pairings. Furthermore, we find that two family-box anticodon stem loops can tightly bind a pair of contiguous codons simultaneously, whereas two split-box anticodon stem loops cannot. The amino acids assigned to family boxes correspond to those accessible by what has been termed cyanosulfidic chemistry, supporting the contention that these limited amino acids might have been the first used in primordial coded peptide synthesis.
Collapse
Affiliation(s)
- Meng Su
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| | - Samuel J. Roberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| | - John D. Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| |
Collapse
|
8
|
Węgrzyn E, Mejdrová I, Müller FM, Nainytė M, Escobar L, Carell T. RNA-Templated Peptide Bond Formation Promotes L-Homochirality. Angew Chem Int Ed Engl 2024; 63:e202319235. [PMID: 38407532 DOI: 10.1002/anie.202319235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The world in which we live is homochiral. The ribose units that form the backbone of DNA and RNA are all D-configured and the encoded amino acids that comprise the proteins of all living species feature an all-L-configuration at the α-carbon atoms. The homochirality of α-amino acids is essential for folding of the peptides into well-defined and functional 3D structures and the homochirality of D-ribose is crucial for helix formation and base-pairing. The question of why nature uses only encoded L-α-amino acids is not understood. Herein, we show that an RNA-peptide world, in which peptides grow on RNAs constructed from D-ribose, leads to the self-selection of homo-L-peptides, which provides a possible explanation for the homo-D-ribose and homo-L-amino acid combination seen in nature.
Collapse
Affiliation(s)
- Ewa Węgrzyn
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ivana Mejdrová
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Felix M Müller
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Milda Nainytė
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Luis Escobar
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
9
|
Radakovic A, Lewicka A, Todisco M, Aitken HRM, Weiss Z, Kim S, Bannan A, Piccirilli JA, Szostak JW. Structure-guided aminoacylation and assembly of chimeric RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583109. [PMID: 38464152 PMCID: PMC10925264 DOI: 10.1101/2024.03.02.583109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Coded ribosomal peptide synthesis could not have evolved unless its sequence and amino acid specific aminoacylated tRNA substrates already existed. We therefore wondered whether aminoacylated RNAs might have served some primordial function prior to their role in protein synthesis. Here we show that specific RNA sequences can be nonenzymatically aminoacylated and ligated to produce amino acid-bridged stem-loop RNAs. We used deep sequencing to identify RNAs that undergo highly efficient glycine aminoacylation followed by loop-closing ligation. The crystal structure of one such glycine-bridged RNA hairpin reveals a compact internally stabilized structure with the same eponymous T-loop architecture found in modern tRNA. We demonstrate that the T-loop assisted amino acid bridging of RNA oligonucleotides enables the rapid template-free assembly of a chimeric version of an aminoacyl-RNA synthetase ribozyme. We suggest that the primordial assembly of such chimeric ribozymes would have allowed the greater functionality of amino acids to contribute to enhanced ribozyme catalysis, providing a driving force for the evolution of sequence and amino acid specific aminoacyl-RNA synthetase enzymes prior to their role in protein synthesis.
Collapse
|
10
|
Dai K, Pol MD, Saile L, Sharma A, Liu B, Thomann R, Trefs JL, Qiu D, Moser S, Wiesler S, Balzer BN, Hugel T, Jessen HJ, Pappas CG. Spontaneous and Selective Peptide Elongation in Water Driven by Aminoacyl Phosphate Esters and Phase Changes. J Am Chem Soc 2023; 145:26086-26094. [PMID: 37992133 DOI: 10.1021/jacs.3c07918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Nature chose phosphates to activate amino acids, where reactive intermediates and complex machinery drive the construction of polyamides. Outside of biology, the pathways and mechanisms that allow spontaneous and selective peptide elongation in aqueous abiotic systems remain unclear. Herein we work to uncover those pathways by following the systems chemistry of aminoacyl phosphate esters, synthetic counterparts of aminoacyl adenylates. The phosphate esters act as solubility tags, making hydrophobic amino acids and their oligomers soluble in water and enabling selective elongation and different pathways to emerge. Thus, oligomers up to dodecamers were synthesized in one flask and on the minute time scale, where consecutive additions activated autonomous phase changes. Depending on the pathway, the resulting phases initially carry nonpolar peptides and amphiphilic oligomers containing phosphate esters. During elongation and phosphate release, shorter oligomers dominate in solution, while the aggregated phase favors the presence of longer oligomers due to their self-assembly propensity. Furthermore we demonstrated that the solution phases can be isolated and act as a new environment for continuous elongation, by adding various phosphate esters. These findings suggest that the systems chemistry of aminoacyl phosphate esters can activate a selection mechanism for peptide bond formation by merging aqueous synthesis and self-assembly.
Collapse
Affiliation(s)
- Kun Dai
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Mahesh D Pol
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Lenard Saile
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Arti Sharma
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bin Liu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Ralf Thomann
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| | - Johanna L Trefs
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Sandra Moser
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Stefan Wiesler
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Bizan N Balzer
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Thorsten Hugel
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Henning J Jessen
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Charalampos G Pappas
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
11
|
Nogal N, Sanz-Sánchez M, Vela-Gallego S, Ruiz-Mirazo K, de la Escosura A. The protometabolic nature of prebiotic chemistry. Chem Soc Rev 2023; 52:7359-7388. [PMID: 37855729 PMCID: PMC10614573 DOI: 10.1039/d3cs00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The field of prebiotic chemistry has been dedicated over decades to finding abiotic routes towards the molecular components of life. There is nowadays a handful of prebiotically plausible scenarios that enable the laboratory synthesis of most amino acids, fatty acids, simple sugars, nucleotides and core metabolites of extant living organisms. The major bottleneck then seems to be the self-organization of those building blocks into systems that can self-sustain. The purpose of this tutorial review is having a close look, guided by experimental research, into the main synthetic pathways of prebiotic chemistry, suggesting how they could be wired through common intermediates and catalytic cycles, as well as how recursively changing conditions could help them engage in self-organized and dissipative networks/assemblies (i.e., systems that consume chemical or physical energy from their environment to maintain their internal organization in a dynamic steady state out of equilibrium). In the article we also pay attention to the implications of this view for the emergence of homochirality. The revealed connectivity between those prebiotic routes should constitute the basis for a robust research program towards the bottom-up implementation of protometabolic systems, taken as a central part of the origins-of-life problem. In addition, this approach should foster further exploration of control mechanisms to tame the combinatorial explosion that typically occurs in mixtures of various reactive precursors, thus regulating the functional integration of their respective chemistries into self-sustaining protocellular assemblies.
Collapse
Affiliation(s)
- Noemí Nogal
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Marcos Sanz-Sánchez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Philosophy, University of the Basque Country, Leioa, Spain
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
12
|
Salibi E, Peter B, Schwille P, Mutschler H. Periodic temperature changes drive the proliferation of self-replicating RNAs in vesicle populations. Nat Commun 2023; 14:1222. [PMID: 36869058 PMCID: PMC9984477 DOI: 10.1038/s41467-023-36940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Growth and division of biological cells are based on the complex orchestration of spatiotemporally controlled reactions driven by highly evolved proteins. In contrast, it remains unknown how their primordial predecessors could achieve a stable inheritance of cytosolic components before the advent of translation. An attractive scenario assumes that periodic changes of environmental conditions acted as pacemakers for the proliferation of early protocells. Using catalytic RNA (ribozymes) as models for primitive biocatalytic molecules, we demonstrate that the repeated freezing and thawing of aqueous solutions enables the assembly of active ribozymes from inactive precursors encapsulated in separate lipid vesicle populations. Furthermore, we show that encapsulated ribozyme replicators can overcome freezing-induced content loss and successive dilution by freeze-thaw driven propagation in feedstock vesicles. Thus, cyclic freezing and melting of aqueous solvents - a plausible physicochemical driver likely present on early Earth - provides a simple scenario that uncouples compartment growth and division from RNA self-replication, while maintaining the propagation of these replicators inside new vesicle populations.
Collapse
Affiliation(s)
- Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Benedikt Peter
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
13
|
Thoma B, Powner MW. Selective Synthesis of Lysine Peptides and the Prebiotically Plausible Synthesis of Catalytically Active Diaminopropionic Acid Peptide Nitriles in Water. J Am Chem Soc 2023; 145:3121-3130. [PMID: 36700882 PMCID: PMC9912261 DOI: 10.1021/jacs.2c12497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Why life encodes specific proteinogenic amino acids remains an unsolved problem, but a non-enzymatic synthesis that recapitulates biology's universal strategy of stepwise N-to-C terminal peptide growth may hold the key to this selection. Lysine is an important proteinogenic amino acid that, despite its essential structural, catalytic, and functional roles in biochemistry, has widely been assumed to be a late addition to the genetic code. Here, we demonstrate that lysine thioacids undergo coupling with aminonitriles in neutral water to afford peptides in near-quantitative yield, whereas non-proteinogenic lysine homologues, ornithine, and diaminobutyric acid cannot form peptides due to rapid and quantitative cyclization that irreversibly blocks peptide synthesis. We demonstrate for the first time that ornithine lactamization provides an absolute differentiation of lysine and ornithine during (non-enzymatic) N-to-C-terminal peptide ligation. We additionally demonstrate that the shortest lysine homologue, diaminopropionic acid, undergoes effective peptide ligation. This prompted us to discover a high-yielding prebiotically plausible synthesis of the diaminopropionic acid residue, by peptide nitrile modification, through the addition of ammonia to a dehydroalanine nitrile. With this synthesis in hand, we then discovered that the low basicity of diaminopropionyl residues promotes effective, biomimetic, imine catalysis in neutral water. Our results suggest diaminopropionic acid, synthesized by peptide nitrile modification, can replace or augment lysine residues during early evolution but that lysine's electronically isolated sidechain amine likely provides an evolutionary advantage for coupling and coding as a preformed monomer in monomer-by-monomer peptide translation.
Collapse
|
14
|
Guo X, Su M. The Origin of Translation: Bridging the Nucleotides and Peptides. Int J Mol Sci 2022; 24:ijms24010197. [PMID: 36613641 PMCID: PMC9820756 DOI: 10.3390/ijms24010197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Extant biology uses RNA to record genetic information and proteins to execute biochemical functions. Nucleotides are translated into amino acids via transfer RNA in the central dogma. tRNA is essential in translation as it connects the codon and the cognate amino acid. To reveal how the translation emerged in the prebiotic context, we start with the structure and dissection of tRNA, followed by the theory and hypothesis of tRNA and amino acid recognition. Last, we review how amino acids assemble on the tRNA and further form peptides. Understanding the origin of life will also promote our knowledge of artificial living systems.
Collapse
Affiliation(s)
- Xuyuan Guo
- School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, D02 PN40 Dublin, Ireland
| | - Meng Su
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Correspondence:
| |
Collapse
|
15
|
Englert A, Vogel JF, Bergner T, Loske J, von Delius M. A Ribonucleotide ↔ Phosphoramidate Reaction Network Optimized by Computer-Aided Design. J Am Chem Soc 2022; 144:15266-15274. [PMID: 35953065 PMCID: PMC9413217 DOI: 10.1021/jacs.2c05861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 12/02/2022]
Abstract
A growing number of out-of-equilibrium systems have been created and investigated in chemical laboratories over the past decade. One way to achieve this is to create a reaction cycle, in which the forward reaction is driven by a chemical fuel and the backward reaction follows a different pathway. Such dissipative reaction networks are still relatively rare, however, and most non-enzymatic examples are based on the carbodiimide-driven generation of carboxylic acid anhydrides. In this work, we describe a dissipative reaction network that comprises the chemically fueled formation of phosphoramidates from natural ribonucleotides (e.g., GMP or AMP) and phosphoramidate hydrolysis as a mild backward reaction. Because the individual reactions are subject to a multitude of interconnected parameters, the software-assisted tool "Design of Experiments" (DoE) was a great asset for optimizing and understanding the network. One notable insight was the stark effect of the nucleophilic catalyst 1-ethylimidazole (EtIm) on the hydrolysis rate, which is reminiscent of the action of the histidine group in phosphoramidase enzymes (e.g., HINT1). We were also able to use the reaction cycle to generate transient self-assemblies, which were characterized by dynamic light scattering (DLS), confocal microscopy (CLSM), and cryogenic transmission electron microscopy (cryo-TEM). Because these compartments are based on prebiotically plausible building blocks, our findings may have relevance for origin-of-life scenarios.
Collapse
Affiliation(s)
- Andreas Englert
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julian F. Vogel
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tim Bergner
- Central
Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jessica Loske
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|