1
|
Guo Z, Zhou Y, Li J, Liu D, Huang Y, Zhang Y, Yu R, Zhu J. Dihydroartemisinic acid dehydrogenase-mediated alternative route for artemisinin biosynthesis. Nat Commun 2025; 16:3888. [PMID: 40274872 PMCID: PMC12022088 DOI: 10.1038/s41467-025-59312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Dihydroartemisinic acid (DHAA) converts into antimalarial drug artemisinin (ART) by auto-oxidation. High production of artemisinic acid (AA) has been achieved by fermentation of engineered Saccharomyces cerevisiae, and AA can be converted into ART through DHAA by chemical synthesis. However, there is no enzyme reported to catalyze the conversion of AA to DHAA. Here, we report a dihydroartemisinic acid dehydrogenase (AaDHAADH) from Artemisia annua L, which catalyzes the bidirectional conversion between AA and DHAA. An optimized mutant AaDHAADH (P26L) is obtained through site-directed mutagenesis and its activity toward AA is 2.82 times that of the original gene. De novo synthesis of DHAA is achieved in S. cerevisiae using the targeted optimized gene AaDHAADH (P26L). Furthermore, 3.97 g/L of DHAA is obtained by fermentation of engineered S. cerevisiae in 5 L bioreactor. The discovery of AaDHAADH provides a more convenient and efficient alternative route for ART biosynthesis.
Collapse
Affiliation(s)
- Zizheng Guo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - Ying Zhou
- Department of Natural Product Chemistry, Jinan University, Guangzhou, 511443, China
| | - Jiangqi Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - De Liu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - Yuwen Huang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - Yu Zhang
- Department of Natural Product Chemistry, Jinan University, Guangzhou, 511443, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China.
- Department of Natural Product Chemistry, Jinan University, Guangzhou, 511443, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China.
- Department of Natural Product Chemistry, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
2
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Zhang Y, Huang X, Song X, Li X, Zhang J, Chen M, Shi Z, Song B, Wei W, Qi C, Zhang Y. Discovery of cadinane sesquiterpenoids as GOT1 inhibitors from Penicillium sp. HZ-5. Bioorg Chem 2025; 157:108303. [PMID: 40020478 DOI: 10.1016/j.bioorg.2025.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Fifteen new cadinane sesquiterpenoids, amorphaenes A-O (1-15), along with one known compound, were isolated from an endophytic fungus Penicillium sp. HZ-5 collected from Hypericum wilsonii N. Robson. Notably, compound 7 was the first example of 11-nor cadinane sesquiterpenoid via the oxidative cleavage between C-11 and C-13. Their structures were elucidated by extensive spectroscopic analysis, singlecrystal X-ray diffraction and ECD calculation and comparison. Significantly, compounds 1, 5, 8, 13 and 16 exhibited glutamic oxaloacetate transaminase 1 (GOT1) inhibitory effects, with IC50 values ranging from 20.0 ± 2.1 to 26.2 ± 2.7 μM and also showed potential cytotoxicity on pancreatic ductal adenocarcinoma (PDAC) cells, with IC50 values ranging from 13.1 ± 1.5 to 28.6 ± 2.9 μM.
Collapse
Affiliation(s)
- Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xinye Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xinming Song
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education; Hainan Normal University, China
| | - Xuan Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinlong Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ming Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Binbin Song
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wei Wei
- China National Center for Biotechnology Development, Beijing 100039, China.
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; China National Center for Biotechnology Development, Beijing 100039, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
4
|
Bates RW, Pham TL, Sae-Lao P. Hydroxylamine natural products. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2025; 93:1-172. [PMID: 40113375 DOI: 10.1016/bs.alkal.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Natural products containing the hydroxylamine group are discussed. These include acyclic hydroxylamines, isoxazolidines, 1,2-oxazines, diketopiperazines, endocyclic hydroxylamines with larger ring sizes, N-hydroxy and N-methoxypyrroles, -indoles, -carbazoles and -carbolines, pyridones, other rings with an exocyclic hydroxylamine, O-acylhydroxylamines and compounds that may be regarded as unprecedented or having little precedent. Isolation, characterization, biosynthesis and synthesis are covered.
Collapse
Affiliation(s)
- Roderick W Bates
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore.
| | - Thang Loi Pham
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Patcharaporn Sae-Lao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore
| |
Collapse
|
5
|
Yuan GY, Zhang JM, Xu YQ, Zou Y. Biosynthesis and Assembly Logic of Fungal Hybrid Terpenoid Natural Products. Chembiochem 2024; 25:e202400387. [PMID: 38923144 DOI: 10.1002/cbic.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
In recent decades, fungi have emerged as significant sources of diverse hybrid terpenoid natural products, and their biosynthetic pathways are increasingly unveiled. This review mainly focuses on elucidating the various strategies underlying the biosynthesis and assembly logic of these compounds. These pathways combine terpenoid moieties with diverse building blocks including polyketides, nonribosomal peptides, amino acids, p-hydroxybenzoic acid, saccharides, and adenine, resulting in the formation of plenty of hybrid terpenoid natural products via C-O, C-C, or C-N bond linkages. Subsequent tailoring steps, such as oxidation, cyclization, and rearrangement, further enhance the biological diversity and structural complexity of these hybrid terpenoid natural products. Understanding these biosynthetic mechanisms holds promise for the discovery of novel hybrid terpenoid natural products from fungi, which will promote the development of potential drug candidates in the future.
Collapse
Affiliation(s)
- Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yan-Qiu Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| |
Collapse
|
6
|
Zou N, Wu YZ, Shang ZW, Cao YW, Liao LM, Wei C, Mo DL, Zhou WJ. Asymmetric [3 + 3] cycloaddition of cinnamaldehyde-derived N-aryl nitrones with 2-indolemethanols enabled by chiral phosphoric acid. Org Biomol Chem 2024; 22:9047-9052. [PMID: 39434558 DOI: 10.1039/d4ob01365d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We described a chiral phosphoric acid (CPA) catalyzed asymmetric [3 + 3] cycloaddition of cinnamaldehyde-derived N-aryl nitrones with 2-indolylmethanols to prepare various indole-fused 1,2-oxazines in high yields (up to 96%) with excellent enantioselectivity (>99% ee). Control experiments indicate that hydrogen bonding plays important roles in controlling the enantioselectivity of products. This strategy provides an efficient pathway to construct enantioenriched indole-fused 1,2-oxazines from N-aryl nitrones with 2-indolylmethanols.
Collapse
Affiliation(s)
- Ning Zou
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China.
| | - Yu-Zheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China.
| | - Zi-Wei Shang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China.
| | - Yu-Wei Cao
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China.
| | - Li-Min Liao
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China.
| | - Cui Wei
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China.
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China.
| | - Wen-Jun Zhou
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China.
| |
Collapse
|
7
|
Zhang Y, Li Q, Zhang J, Chen M, Li X, Qiao Y, Wang K, Qi C, Zhang Y. Eurochevalierines A -I, Sesquiterpene Alkaloid Hybrids with Anti-Triple Negative Breast Cancer Activity from Penicillium sp. HZ-5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39016690 DOI: 10.1021/acs.jafc.4c04011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Nine new sesquiterpene alkaloids, eurochevalierines A-I (1-9), were separated from the rice cultures of the endophytic fungus Penicillium sp. HZ-5 originated from the fresh leaf of Hypericum wilsonii N. Robson. The structures' illumination was conducted by single-crystal X-ray diffraction, extensive spectroscopic analysis, alkaline hydrolysis reaction, and Snatzke's method. Importantly, the antitumor activities screen of these isolates indicated that 1 could suppress triple negative breast cancer (TNBC) cell proliferation and induce apoptosis, with an IC50 value of 5.4 μM, which is comparable to the positive control docetaxel (DXT). Flow cytometry experiments mentioned that compound 1 significantly reduced mitochondrial membrane potential (MMP) of TNBC cells. In addition, 1 could activate caspase-3 and elevated the levels of reactive oxygen species (ROS) and expressions of suppressive cytokines and chemokines. Further Western blot analysis showed that 1 could selectively induce mitochondria-dependent apoptosis in TNBC cells via the BAX/BCL-2 pathway. Remarkably, these finding provide a new natural product skeleton for the treatment of TNBC.
Collapse
Affiliation(s)
- Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic, Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinlong Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuben Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic, Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Kerpa S, Schulze VR, Holzapfel M, Cvancar L, Fischer M, Maison W. Decoration of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) with N-oxides increases the T 1 relaxivity of Gd-complexes. ChemistryOpen 2024; 13:e202300298. [PMID: 38224205 PMCID: PMC11230940 DOI: 10.1002/open.202300298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
High complex stability and longitudinal relaxivity of Gd-based contrast agents are important requirements for magnetic resonance imaging (MRI) because they ensure patient safety and contribute to measurement sensitivity. Charged and zwitterionic Gd3+-complexes of the well-known chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) provide an excellent basis for the development of safe and sensitive contrast agents. In this report, we describe the synthesis of DOTA-NOx, a DOTA derivative with four N-oxide functionalities via "click" functionalization of the tetraazide DOTAZA. The resulting complexes Gd-DOTA-NOx and Eu-DOTA-NOx are stable compounds in aqueous solution. NMR-spectroscopic characterization revealed a high excess of the twisted square antiprismatic (TSAP) coordination geometry over square antiprismatic (SAP). The longitudinal relaxivity of Gd-DOTA-NOx was found to be r1=7.7 mm-1 s-1 (1.41 T, 37 °C), an unusually high value for DOTA complexes of comparable weight. We attribute this high relaxivity to the steric influence and an ordering effect on outer sphere water molecules surrounding the complex generated by the strongly hydrated N-oxide groups. Moreover, Gd-DOTA-NOx was found to be stable against transchelation with high excess of EDTA (200 eq) over a period of 36 h, and it has a similar in vitro cell toxicity as clinically used DOTA-based GBCAs.
Collapse
Affiliation(s)
- Svenja Kerpa
- Department of Chemistry, Institute of Pharmacy, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Verena R Schulze
- Fraunhofer Institute for Applied Polymer Research IAP, Center for Applied Nanotechnology CAN, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Malte Holzapfel
- Fraunhofer Institute for Applied Polymer Research IAP, Center for Applied Nanotechnology CAN, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Lina Cvancar
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Wolfgang Maison
- Department of Chemistry, Institute of Pharmacy, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| |
Collapse
|
9
|
Johnson SB, Li H, Valentino H, Sobrado P. Mechanism of Nitrone Formation by a Flavin-Dependent Monooxygenase. Biochemistry 2024; 63:1445-1459. [PMID: 38779817 PMCID: PMC11154958 DOI: 10.1021/acs.biochem.3c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
OxaD is a flavin-dependent monooxygenase (FMO) responsible for catalyzing the oxidation of an indole nitrogen atom, resulting in the formation of a nitrone. Nitrones serve as versatile intermediates in complex syntheses, including challenging reactions like cycloadditions. Traditional organic synthesis methods often yield limited results and involve environmentally harmful chemicals. Therefore, the enzymatic synthesis of nitrone-containing compounds holds promise for more sustainable industrial processes. In this study, we explored the catalytic mechanism of OxaD using a combination of steady-state and rapid-reaction kinetics, site-directed mutagenesis, spectroscopy, and structural modeling. Our investigations showed that OxaD catalyzes two oxidations of the indole nitrogen of roquefortine C, ultimately yielding roquefortine L. The reductive-half reaction analysis indicated that OxaD rapidly undergoes reduction and follows a "cautious" flavin reduction mechanism by requiring substrate binding before reduction can take place. This characteristic places OxaD in class A of the FMO family, a classification supported by a structural model featuring a single Rossmann nucleotide binding domain and a glutathione reductase fold. Furthermore, our spectroscopic analysis unveiled both enzyme-substrate and enzyme-intermediate complexes. Our analysis of the oxidative-half reaction suggests that the flavin dehydration step is the slow step in the catalytic cycle. Finally, through mutagenesis of the conserved D63 residue, we demonstrated its role in flavin motion and product oxygenation. Based on our findings, we propose a catalytic mechanism for OxaD and provide insights into the active site architecture within class A FMOs.
Collapse
Affiliation(s)
- Sydney B Johnson
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hao Li
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hannah Valentino
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center of Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
10
|
Fan J, Wei PL, Yin WB. Formation of Bridged Disulfide in Epidithiodioxopiperazines. Chembiochem 2024; 25:e202300770. [PMID: 38116907 DOI: 10.1002/cbic.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
Epidithiodioxopiperazine (ETP) alkaloids, featuring a 2,5-diketopiperazine core and transannular disulfide bridge, exhibit a broad spectrum of biological activities. However, the structural complexity has prevented efficient chemical synthesis and further clinical research. In the past few decades, many achievements have been made in the biosynthesis of ETPs. Here, we discuss the biosynthetic progress and summarize them as two comprehensible metabolic principles for better understanding the complex pathways of α, α'- and α, β'-disulfide bridged ETPs. Specifically, we systematically outline the catalytic machineries to install α, α'- and α, β'-disulfide by flavin-containing oxygenases. This concept would contribute to the medical and industrial applications of ETPs.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Yan LH, Li X, Wang BG. Natural products with 1,2-oxazine scaffold: occurrence, chemical diversity, bioactivity, synthesis, and biosynthesis. Nat Prod Rep 2023; 40:1874-1900. [PMID: 37642299 DOI: 10.1039/d3np00023k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Covering: up to the end of July, 20231,2-Oxazine is a heterocyclic scaffold rarely found in natural products and is characterized by a directly connected N-O bond in a six-membered ring. Since the discovery of geneserine, the first 1,2-oxazine-containing natural product (1,2-oxazine NP) being isolated from Calabar bean (Physostigma venenosum) in 1925, a total of 76 naturally occurring 1,2-oxazine NPs have been isolated and identified from various sources, which have attracted the attention of researchers in the field of natural product chemistry, organic synthesis, biosynthesis, and pharmacology. This review summarizes the chemical family of 1,2-oxazine NPs, focusing on their source organisms, structural diversities, chemical synthesis, and biosynthesis.
Collapse
Affiliation(s)
- Li-Hong Yan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| |
Collapse
|
12
|
Salim AA, Butler MS, Blaskovich MAT, Henderson IR, Capon RJ. Natural products as anthelmintics: safeguarding animal health. Nat Prod Rep 2023; 40:1754-1808. [PMID: 37555325 DOI: 10.1039/d3np00019b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.
Collapse
Affiliation(s)
- Angela A Salim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| |
Collapse
|
13
|
Hazra A, Ghosh A, Yadav N, Banerjee P. Organocatalytic (3+3)-cycloaddition of ortho-substituted phenyl nitrones with aryl cyclopropane carbaldehydes: a facile access to enantioenriched 1,2-oxazinanes. Chem Commun (Camb) 2023; 59:11133-11136. [PMID: 37650130 DOI: 10.1039/d3cc02877a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The first asymmetric (3+3)-cycloaddition of ortho-substituted phenyl nitrones with aryl cyclopropane carbaldehydes has been demonstrated by secondary amine catalysts. While the other ortho-substituents gave 1,2-oxazinanes, ortho-hydroxy ones provided a novel class of tetrahydrochromeno-1,2-oxazine cores via rare 1,3-aryl migration, followed by cyclization. An unusual type of asymmetric approach was also recognized.
Collapse
Affiliation(s)
- Arijit Hazra
- Lab no-406, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India.
| | - Asit Ghosh
- Lab no-406, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India.
| | - Neeraj Yadav
- Lab no-406, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Lab no-406, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India.
| |
Collapse
|
14
|
Tseng CC, Chen L, Lee C, Tu Z, Lin CH, Lin HC. Characterization and catalytic investigation of fungal single-module nonribosomal peptide synthetase in terpene-amino acid meroterpenoid biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad043. [PMID: 38049376 PMCID: PMC10720950 DOI: 10.1093/jimb/kuad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Hybrid natural products are compounds that originate from diverse biosynthetic pathways and undergo a conjugation process, which enables them to expand their chemical diversity and biological functionality. Terpene-amino acid meroterpenoids have garnered increasing attention in recent years, driven by the discovery of noteworthy examples such as the anthelmintic CJ-12662, the insecticidal paeciloxazine, and aculene A (1). In the biosynthesis of terpene-amino acid natural products, single-module nonribosomal peptide synthetases (NRPSs) have been identified to be involved in the esterification step, catalyzing the fusion of modified terpene and amino acid components. Despite prior investigations into these NRPSs through gene deletion or in vivo experiments, the enzymatic basis and mechanistic insights underlying this family of single-module NRPSs remain unclear. In this study, we performed biochemical characterization of AneB by in vitro characterization, molecular docking, and site-directed mutagenesis. The enzyme reaction analyses, performed with L-proline and daucane/nordaucane sesquiterpene substrates, revealed that AneB specifically esterifies the C10-OH of aculenes with L-proline. Notably, in contrast to ThmA in CJ-12662 biosynthesis, which exclusively recognizes oxygenated amorpha-4,11-diene sesquiterpenes for L-tryptophan transfer, AneB demonstrates broad substrate selectivity, including oxygenated amorpha-4,11-diene and 2-phenylethanol, resulting in the production of diverse unnatural prolyl compounds. Furthermore, site-directed mutagenesis experiments indicated the involvement of H794 and D798 in the esterification catalyzed by AneB. Lastly, domain swapping between AneB and ThmA unveiled that the A‒T domains of ThmA can be effectively harnessed by the C domain of AneB for L-tryptophan transfer, thus highlighting the potential of the C domain of AneB for generating various terpene-amino acid meroterpenoid derivatives. ONE-SENTENCE SUMMARY The enzymatic basis and mechanistic insights into AneB, a single-module NRPS, highlight its capacity to generate various terpene-amino acid meroterpenoid derivatives.
Collapse
Affiliation(s)
- Cheng-Chung Tseng
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- School of Pharmacy, National Taiwan University, Taipei 100, Taiwan R.O.C
| | - Li‐Xun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Chi‐Fang Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- School of Pharmacy, National Taiwan University, Taipei 100, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| |
Collapse
|
15
|
Chiang CY, Ohashi M, Tang Y. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Nat Prod Rep 2023; 40:89-127. [PMID: 36125308 PMCID: PMC9906657 DOI: 10.1039/d2np00050d] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2010 to 2022Heterologous expression of natural product biosynthetic gene clusters (BGCs) has become a widely used tool for genome mining of cryptic pathways, bottom-up investigation of biosynthetic enzymes, and engineered biosynthesis of new natural product variants. In the field of fungal natural products, heterologous expression of a complete pathway was first demonstrated in the biosynthesis of tenellin in Aspergillus oryzae in 2010. Since then, advances in genome sequencing, DNA synthesis, synthetic biology, etc. have led to mining, assignment, and characterization of many fungal BGCs using various heterologous hosts. In this review, we will highlight key examples in the last decade in integrating heterologous expression into genome mining and biosynthetic investigations. The review will cover the choice of heterologous hosts, prioritization of BGCs for structural novelty, and how shunt products from heterologous expression can reveal important insights into the chemical logic of biosynthesis. The review is not meant to be exhaustive but is rather a collection of examples from researchers in the field, including ours, that demonstrates the usefulness and pitfalls of heterologous biosynthesis in fungal natural product discovery.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Masao Ohashi
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Yi Tang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
- Dept. of Chemistry and Biochemistry, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Abstract
A personal selection of 32 recent papers is presented, covering various aspects of current developments in bioorganic chemistry and novel natural products, such as daphnepapytone A from Daphne papyracea.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|