1
|
Jiang S, Zhang T, Luo XY, Dong S, Ma JT, Xiao LJ. Ligand-Controlled Regiodivergent Carbosilylation of 1,3-Dienes via Nickel-Catalyzed Three-Component Coupling Reactions. Angew Chem Int Ed Engl 2025:e202504494. [PMID: 40178160 DOI: 10.1002/anie.202504494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
The regiodivergent carbosilylation of 1,3-dienes presents a formidable challenge due to inherently complex selectivity control over multiple potential reaction pathways. Here, we report a ligand-controlled, regiodivergent carbosilylation of 1,3-dienes with aldehydes and silylboranes, achieving unprecedented site-selectivity using nickel catalysts with distinct phosphine ligands. The use of triethylphosphine promotes 4,3-addition selectivity, while employing (2-biphenyl)dicyclohexylphosphine facilitates 4,1-addition selectivity. This method displays excellent regio- and diastereoselectivity, as well as a broad substrate scope and substantial functional group tolerance. Mechanistic studies indicate that the ligand choice is crucial for directing the reaction pathway and stabilizing π-allyl-nickel intermediates. Our protocol provides a practical and efficient approach to synthesizing valuable functionalized allylsilanes, which are important in various synthetic applications.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Tianze Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Xiao-Yuan Luo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Shoucheng Dong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Jin-Tao Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Monteferrante OE, Houghtling KE, Kropiwnicki AR, Paradine SM. Urea Ligand-Promoted Chainwalking Heteroannulation for the Synthesis of 6- and 7-membered Azaheterocycles. Chemistry 2024; 30:e202402587. [PMID: 39178046 DOI: 10.1002/chem.202402587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/25/2024]
Abstract
Typical approaches to heterocycle construction require significant changes in synthetic strategy even for a change as minor as increasing the ring size. The ability to access multiple heterocyclic scaffolds through a common synthetic approach, simply through trivial modification of one reaction component, would enable facile access to diverse libraries of structural analogues of core scaffolds. Here, we show that urea-derived ligands effectively promote Pd-mediated chainwalking processes to enable remote heteroannulation for the rapid construction of six- and seven-membered azaheterocycles under essentially identical reaction conditions. This method demonstrates good functional group tolerance and effectively engages sterically hindered substrates. In addition, this reaction is applicable to target-oriented synthesis, demonstrated through the formal synthesis of antimalarial alkaloid galipinine.
Collapse
Affiliation(s)
- Owen E Monteferrante
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY-14627, USA
| | - Kaitlyn E Houghtling
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY-14627, USA
| | - Aidan R Kropiwnicki
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY-14627, USA
| | - Shauna M Paradine
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY-14627, USA
| |
Collapse
|
3
|
Wang J, Xu B, Wang Y, Xia G, Zhang ZM, Zhang J. Pd-Catalyzed Enantioselective Three-Component Carboamination of 1,3-Cyclohexadiene. J Am Chem Soc 2024; 146:21231-21238. [PMID: 39074300 DOI: 10.1021/jacs.4c07382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Asymmetric Pd-catalyzed three-component carboamination reactions of dienes to construct chiral cyclohexenylamines, which are of great importance in many fields of chemistry, have remained largely unexplored. Here, we demonstrate a highly enantio- and regioselective Pd/Ming-Phos-catalyzed carboamination reactions of 1,3-cyclohexadiene with readily available aryl iodides and anilines for facile access to diverse valuable chiral cyclohexenylamines. The process shows excellent functional group tolerance, easy scalability, and mild conditions. Moreover, mechanistic studies suggest that this reaction has a first-order dependence on the concentration of the palladium catalyst and aniline.
Collapse
Affiliation(s)
- Jinrong Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R.China
| | - Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R.China
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, P.R.China
| | - Yibo Wang
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Guangzhen Xia
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Soochow University, Suzhou, Jiangsu 215123, P.R.China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R.China
- Fudan Zhangjiang Institute, Shanghai, 201203, P.R.China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R.China
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, P.R.China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R.China
| |
Collapse
|
4
|
Abe M, Kawamoto M, Mizukami A, Kimachi T, Inamoto K. Palladium-Catalyzed Heteroannulation of Salicylamides with Propargyl Carbonates: Synthesis of 1,4-Benzoxazepin-5-ones. J Org Chem 2024; 89:10037-10046. [PMID: 38946164 DOI: 10.1021/acs.joc.4c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Herein, we report a palladium-catalyzed method to synthesize 1,4-benzoxazepin-5-ones using salicylamides and propargyl carbonates. The heteroannulation provides a wide range of products in good to excellent yields with broad functional group tolerance. In addition, H2O is used as a low-cost, abundant, and safe solvent, which is important in terms of sustainability.
Collapse
Affiliation(s)
- Masahiro Abe
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Megumu Kawamoto
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Akiho Mizukami
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Tetsutaro Kimachi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kiyofumi Inamoto
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| |
Collapse
|
5
|
Rodina D, Vaith J, Paradine SM. Ligand control of regioselectivity in palladium-catalyzed heteroannulation reactions of 1,3-Dienes. Nat Commun 2024; 15:5433. [PMID: 38926361 PMCID: PMC11208576 DOI: 10.1038/s41467-024-49803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Olefin carbofunctionalization reactions are indispensable tools for constructing diverse, functionalized scaffolds from simple starting materials. However, achieving precise control over regioselectivity in intermolecular reactions remains a formidable challenge. Here, we demonstrate that using PAd2nBu as a ligand enables regioselective heteroannulation of o-bromoanilines with branched 1,3-dienes through ligand control. This approach provides regiodivergent access to 3-substituted indolines, showcasing excellent regioselectivity and reactivity across a range of functionalized substrates. To gain further insights into the origin of selectivity control, we employ a data-driven strategy, developing a linear regression model using calculated parameters for phosphorus ligands. This model identifies four key parameters governing regioselectivity in this transformation, paving the way for future methodology development. Additionally, density functional theory calculations elucidate key selectivity-determining transition structures along the reaction pathway, corroborating our experimental observations and establishing a solid foundation for future advancements in regioselective olefin difunctionalization reactions.
Collapse
Affiliation(s)
- Dasha Rodina
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Jakub Vaith
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Shauna M Paradine
- Department of Chemistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
6
|
Xie S, Fu L, Ding Y, Wang Q, He C, Xu W, Wang Q, Zhong Y, Fan X, Yang M. Electrochemical C-H Mono-/Multi-Bromination Regulation of N-Sulfonylanilines on a Cost-Effective Carbon Fiber Electrode and Its Prospective Electroactive Molecule Screening. J Org Chem 2024; 89:6759-6769. [PMID: 38683949 DOI: 10.1021/acs.joc.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Electrochemical C-H mono/multi-bromination regulation of N-sulfonylanilines on the cost-effective CF electrode is described. This reaction proceeds smoothly under mild conditions with a broad substrate scope, affording diverse mono/multi-brominated anilines in moderate to good yields. Mechanism study reveals that this transformation involves anodic oxidation, aromatic electrophilic substitution, and deprotonation. Preliminary electroactive molecule screening results in its prospective application in electroactive MBs for electrochemical biosensors.
Collapse
Affiliation(s)
- Shuchun Xie
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Li Fu
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Yechun Ding
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Qi Wang
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Chen He
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Wenjun Xu
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Qing Wang
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Yingfang Zhong
- Academic Affairs Office, Gannan Medical University, Ganzhou 341000, China
| | - Xiaona Fan
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Min Yang
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
7
|
Canfield AM, Rodina D, Paradine SM. Dienes as Versatile Substrates for Transition Metal-Catalyzed Reactions. Angew Chem Int Ed Engl 2024; 63:e202401550. [PMID: 38436553 PMCID: PMC11078299 DOI: 10.1002/anie.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Dienes have been of great interest to synthetic chemists as valuable substrates due to their abundance and ease of synthesis. Their unique stereoelectronic properties enable broad reactivity with a wide range of transition metals to construct molecular complexity facilitating synthesis of biologically active compounds. In addition, structural diene variation can result in substrate-controlled reactions, providing valuable mechanistic insights into reactivity and selectivity patterns. The last decade has seen a wealth of new methodologies involving diene substrates through the power of transition metal catalysis. This review summarizes recent advances and remaining opportunities for transition metal-catalyzed transformations involving dienes.
Collapse
Affiliation(s)
- Amanda M. Canfield
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627
| | - Dasha Rodina
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627
| | - Shauna M. Paradine
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627
| |
Collapse
|
8
|
Clarke GE, Firth JD, Ledingham LA, Horbaczewskyj CS, Bourne RA, Bray JTW, Martin PL, Eastwood JB, Campbell R, Pagett A, MacQuarrie DJ, Slattery JM, Lynam JM, Whitwood AC, Milani J, Hart S, Wilson J, Fairlamb IJS. Deciphering complexity in Pd-catalyzed cross-couplings. Nat Commun 2024; 15:3968. [PMID: 38729925 PMCID: PMC11087562 DOI: 10.1038/s41467-024-47939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Understanding complex reaction systems is critical in chemistry. While synthetic methods for selective formation of products are sought after, oftentimes it is the full reaction signature, i.e., complete profile of products/side-products, that informs mechanistic rationale and accelerates discovery chemistry. Here, we report a methodology using high-throughput experimentation and multivariate data analysis to examine the full signature of one of the most complicated chemical reactions catalyzed by palladium known in the chemical literature. A model Pd-catalyzed reaction was selected involving functionalization of 2-bromo-N-phenylbenzamide and multiple bond activation pathways. Principal component analysis, correspondence analysis and heatmaps with hierarchical clustering reveal the factors contributing to the variance in product distributions and show associations between solvents and reaction products. Using robust data from experiments performed with eight solvents, for four different reaction times at five different temperatures, we correlate side-products to a major dominant N-phenyl phenanthridinone product, and many other side products.
Collapse
Affiliation(s)
- George E Clarke
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - James D Firth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | | | - Richard A Bourne
- Institute of Process Research and Development, School of Chemistry & School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Joshua T W Bray
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Poppy L Martin
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | - Rebecca Campbell
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Alex Pagett
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | - John M Slattery
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jason M Lynam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jessica Milani
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Sam Hart
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Julie Wilson
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK.
| | - Ian J S Fairlamb
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
9
|
Ma X, Malcolmson SJ. Palladium-Catalyzed Regiodivergent Three-Component Alkenylamination of 1,3-Dienes with Alkyl and Aryl Amines. J Am Chem Soc 2023; 145:27680-27689. [PMID: 38054457 PMCID: PMC10802114 DOI: 10.1021/jacs.3c09873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We report a palladium-catalyzed method for 4,3- or 4,1-selective alkenylamination of terminal dienes. Three-component couplings proceed with alkenyl triflates and several amines, giving vicinal carboamination with a Xantphos-supported catalyst and distal difunctionalization with a phosphoramidite ligand. A number of constitutionally different disubstituted dienes also participate in regiodivergent carboaminations. Experimental evidence indicates that selectivity in the Xantphos reactions is largely influenced by the substrate, whereas the phosphoramidite-promoted process is catalyst controlled, orchestrated by a key π-stacking interaction among the ligand, solvent, and substrate.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
10
|
Zhang WS, Ji DW, Yang Y, Song TT, Zhang G, Wang XY, Chen QA. Nucleophilic aromatization of monoterpenes from isoprene under nickel/iodine cascade catalysis. Nat Commun 2023; 14:7087. [PMID: 37925506 PMCID: PMC10625535 DOI: 10.1038/s41467-023-42847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
As a large number of organic compounds possessing two isoprene units, monoterpenes and monoterpenoids play important roles in pharmaceutical, cosmetic, agricultural, and food industries. In nature, monoterpenes are constructed from geranyl pyrophosphate (C10) via various transformations. Herein, the bulk C5 chemical-isoprene, is used for the creation of various monoterpenoids via a nucleophilic aromatization of monoterpenes under cascade catalysis of nickel and iodine. Drugs and oil mixtures from conifer and lemon can be convergently transformed to the desired monoterpenoid. Preliminary mechanistic studies are conducted to get insights about reaction pathway. Two types of cyclic monoterpenes can be respectively introduced onto two similar heterocycles via orthogonal C-H functionalization. And various hybrid terpenyl indoles are programmatically assembled from abundant C5 or C10 blocks. This work not only contributes a high chemo-, regio-, and redox-selective transformation of isoprene, but also provides a complementary approach for the creation of unnatural monoterpenoids.
Collapse
Affiliation(s)
- Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yang Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Gong Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
11
|
Ni HQ, Dai JC, Yang S, Loach RP, Chuba MD, McAlpine IJ, Engle KM. Catalytic σ-Bond Annulation with Ambiphilic Organohalides Enabled by β-X Elimination. Angew Chem Int Ed Engl 2023; 62:e202306581. [PMID: 37306958 DOI: 10.1002/anie.202306581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
We describe a catalytic cascade sequence involving directed C(sp3 )-H activation followed by β-heteroatom elimination to generate a PdII (π-alkene) intermediate that then undergoes redox-neutral annulation with an ambiphilic aryl halide to access 5- and 6-membered (hetero)cycles. Various alkyl C(sp3 )-oxygen, nitrogen, and sulfur bonds can be selectively activated, and the annulation proceeds with high diastereoselectivity. The method enables modification of amino acids with good retention of enantiomeric excess, as well as σ-bond ring-opening/ring-closing transfiguration of low-strain heterocycles. Despite its mechanistic complexity, the method employs simple conditions and is operationally straightforward to perform.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, 92037, La Jolla, CA, USA
| | - Jing-Cheng Dai
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, 92037, La Jolla, CA, USA
| | - Shouliang Yang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, 92121, San Diego, CA, USA
| | - Richard P Loach
- Pfizer Worldwide Research and Development, 06340, Groton, CT, USA
| | - Matthew D Chuba
- Pfizer Worldwide Research and Development, 06340, Groton, CT, USA
| | - Indrawan J McAlpine
- Genesis Therapeutics, 11568 Sorrento Valley Rd. Suite 8, 92121, San Diego, CA, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, 92037, La Jolla, CA, USA
| |
Collapse
|
12
|
Molnár Á. Recent Advances in the Synthesis of Five‐membered Nitrogen Heterocycles Induced by Palladium Ions and Complexes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
13
|
Saikia R, Das S, Almin A, Mahanta A, Sarma B, Thakur AJ, Bora U. N, N′-Dimethylurea as an efficient ligand for the synthesis of pharma-relevant motifs through Chan–Lam cross-coupling strategy. Org Biomol Chem 2023; 21:3143-3155. [PMID: 36987866 DOI: 10.1039/d3ob00176h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The combination of copper and N,N′-dimethylurea is used to showcase the Chan–Lam N-arylation of three different nitrogen nucleophiles. The synthesized catalyst is cheap, chemoselective, and also found to be effective in the N-arylation of target APIs.
Collapse
Affiliation(s)
- Rakhee Saikia
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Sanghamitra Das
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Arzu Almin
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Abhijit Mahanta
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
- Department of Chemistry, Digboi College, Tinsukia, Assam-786171, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Ashim J Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Utpal Bora
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| |
Collapse
|
14
|
Houghtling KE, Canfield AM, Paradine SM. Convergent Synthesis of Dihydrobenzofurans via Urea Ligand-Enabled Heteroannulation of 2-Bromophenols with 1,3-Dienes. Org Lett 2022; 24:5787-5790. [PMID: 35904546 PMCID: PMC9380016 DOI: 10.1021/acs.orglett.2c02301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
We disclose a palladium and urea ligand-mediated heteroannulation
of 2-bromophenols and 1,3-dienes. This method addresses synthetic
challenges present in the palladium-catalyzed heteroannulation of
bifunctional reagents and olefins by engaging a diverse scope of coupling
partners under a unified set of reaction conditions. Our recently
developed urea ligand platform outperforms phosphine ligands to generate
the dihydrobenzofuran motif in a convergent manner.
Collapse
Affiliation(s)
- Kaitlyn E Houghtling
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Amanda M Canfield
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Shauna M Paradine
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|