1
|
Wang N, Zhang Q, Sun Z, Zhang H, Hu C, Sun H, Pang X, Chen X. Recycling Polyester and Polycarbonate Plastics with Carbocation Lewis Acidic Organocatalysts. ACS Macro Lett 2025; 14:377-384. [PMID: 40056447 DOI: 10.1021/acsmacrolett.5c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
The effective management of plastic waste is critical for environmental sustainability. This work explores the use of carbocation catalysts for the recycling of common polyesters and polycarbonates through alcoholysis. We demonstrate complete depolymerization of end-of-life materials and investigate the relationship between the catalytic reactivity and the structural features of the carbocation compounds, including the cations and their counteranions. Carbocations function as Lewis acids, facilitating the interaction with carbonyls in polymer chains. Moreover, our approach enables the hierarchical degradation of the polyester blends. This research not only elucidates the catalytic role of carbocations in the alcoholysis of these polymers, but also establishes a metal-free process for the efficient recycling of waste plastics.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Han Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Yamagishi R, Anada M, Sueki S, Makino K, Kojima T, Kawasaki-Takasuka T, Mori K. Double Hydride Transfer Enabled Substitution of All Hydrogens at α,β-Positions of Cyclic Amines: Access to α,β-Unsaturated Lactams. Org Lett 2025; 27:1961-1966. [PMID: 39946240 DOI: 10.1021/acs.orglett.5c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A one-shot substitution of all hydrogens at the α,β-positions of saturated cyclic amines was achieved. The key feature of this reaction is the sequential involvement of intra- and intermolecular redox processes. When N,O-acetals obtained through an internal redox process were treated with a catalytic amount of Zn(OTf)2 and an excess amount of benzylidene barbiturates, three key transformations involving intermolecular redox process occurred successively to afford α,β-unsaturated lactams in moderate to good chemical yields.
Collapse
Affiliation(s)
- Ryosuke Yamagishi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei, Tokyo 184-8588, Japan
| | - Masahiro Anada
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Shunsuke Sueki
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Kosho Makino
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Tatsuhiro Kojima
- Department of Applied Chemistry, Kobe City College of Technology (KCCT), 8-3 Gakuen-Higashimachi Nishi-ku, Kobe, 651-2194, Japan
| | - Tomoko Kawasaki-Takasuka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei, Tokyo 184-8588, Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Kajtár M, Király SB, Bényei A, Kiss-Szikszai A, Kónya-Ábrahám A, Horváth LB, Bősze S, Kotschy A, Paczal A, Kurtán T. Knoevenagel-IMHDA and -IMSDA sequences for the synthesis of chiral condensed O,N-, S,N- and N-heterocycles. RSC Adv 2025; 15:1230-1248. [PMID: 39816179 PMCID: PMC11733422 DOI: 10.1039/d4ra08353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Domino Knoevenagel-cyclization reactions of styrene substrates, containing an N-(ortho-formyl)aryl subunit, were carried out with N-substituted 2-cyanoacetamides to prepare tetrahydro-4H-pyrano[3,4-c]quinolone and hexahydrobenzo[j]phenanthridine derivatives by competing IMHDA and IMSDA cyclization, respectively. The diastereoselective IMHDA step with α,β-unsaturated amide, thioamide, ester and ketone subunits as a heterodiene produced condensed chiral tetrahydropyran or thiopyran derivatives, which in the case of Meldrum's acid were reacted further with amine nucleophiles in a multistep domino sequence. In order to simplify the benzene-condensed tricyclic core of the targets and get access to hexahydro-1H-pyrano[3,4-c]pyridine derivatives, a truncated substrate was reacted with cyclic and acyclic active methylene reagents in diastereoselective Knoevenagel-IMHDA reactions to prepare novel condensed heterocyclic scaffolds. The chemo-, regio- and diastereoselectivity of the cyclization step were investigated and structural elucidation was aided by single crystal X-ray analysis.
Collapse
Affiliation(s)
- Mihály Kajtár
- Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
- Doctoral School of Chemistry, University of Debrecen Egyetem Square 1 4032 Debrecen Hungary
| | - Sándor Balázs Király
- Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
| | - Attila Bényei
- Department of Physical Chemistry, University of Debrecen Egyetem Square 1 4032 Debrecen Hungary
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
| | - Anita Kónya-Ábrahám
- Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
| | - Lilla Borbála Horváth
- Hungarian Research Network (HUN-REN), Research Group of Peptide Chemistry, Eötvös Loránd University H1117 Budapest Hungary
| | - Szilvia Bősze
- Hungarian Research Network (HUN-REN), Research Group of Peptide Chemistry, Eötvös Loránd University H1117 Budapest Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Faculty of Medicine Budapest 1089 Hungary
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry Budapest 1031 Hungary
| | - Attila Paczal
- Servier Research Institute of Medicinal Chemistry Budapest 1031 Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
| |
Collapse
|
4
|
Cheng Y, Rein J, Le N, Lin S. Oxoammonium-Catalyzed Ether Oxidation via Hydride Abstraction: Methodology Development and Mechanistic Investigation Using Paramagnetic Relaxation Enhancement NMR. J Am Chem Soc 2024; 146:31420-31432. [PMID: 39527468 PMCID: PMC12005942 DOI: 10.1021/jacs.4c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydride abstraction represents a promising yet underexplored approach in the functionalization of C-H bonds. In this work, we report the oxidation of α-C-H bonds of ethers via oxoammonium catalysis using 3-chloroperbenzoic acid (mCPBA) as the terminal chemical oxidant or by means of electrochemistry. Mechanistic studies revealed intricate equilibria and interconversion events between various catalytic intermediates in the presence of mCPBA, which alone however was incompetent to drive catalytic turnover. The addition of a small amount of strong acid HNTf2 or weakly coordinating salt NaSbF6 turned on catalytic turnover and promoted ether oxidation with excellent efficiency. NMR experiments leveraging paramagnetic relaxation enhancement effect allowed for quantification of open-shell catalytic intermediates in real time during the reaction course, which aided the identification of catalyst resting states and elucidation of reaction mechanisms.
Collapse
Affiliation(s)
- Yukun Cheng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jonas Rein
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nguyen Le
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Wang T, Wang WB, Fu YM, Zhu CF, Cheng LJ, You YE, Wu X, Li YG. Asymmetric Double Oxidative [3 + 2] Cycloaddition for the Synthesis of CF 3-Containing Spiro[pyrrolidin-3,2'-oxindole]. Org Lett 2023; 25:3152-3156. [PMID: 37083397 DOI: 10.1021/acs.orglett.3c01083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
An asymmetric double oxidative [3 + 2] cycloaddition is reported. Oxidation of 3-((2,2,2-trifluoroethyl)amino)indolin-2-ones and β-aryl-substituted aldehydes simultaneously and subsequent asymmetric cycloaddition in the presence of the chiral amino catalyst generated highly functionalized chiral CF3-containing spiro[pyrrolidin-3,2'-oxindole] with four contiguous stereocenters stereoselectively, which is characterized by directly constructing two C-C bonds from four C(sp3)-H bonds. This new method features mild conditions, broad substrate scope, and excellent functional group compatibility.
Collapse
Affiliation(s)
- Tao Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wen-Bin Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan-Ming Fu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cheng-Feng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lan-Jun Cheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang-En You
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - You-Gui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Asymmetric organocatalysis: from a breakthrough methodology to sustainable catalysts and processes. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Miller JL, Lawrence JMIA, Rodriguez Del Rey FO, Floreancig PE. Synthetic applications of hydride abstraction reactions by organic oxidants. Chem Soc Rev 2022; 51:5660-5690. [PMID: 35712818 DOI: 10.1039/d1cs01169c] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbon-hydrogen bond functionalizations provide an attractive method for streamlining organic synthesis, and many strategies have been developed for conducting these transformations. Hydride-abstracting reactions have emerged as extremely effective methods for oxidative bond-forming processes due to their mild reaction conditions and high chemoselectivity. This review will predominantly focus on the mechanism, reaction development, natural product synthesis applications, approaches to catalysis, and use in enantioselective processes for hydride abstractions by quinone, oxoammonium ion, and carbocation oxidants. These are the most commonly employed hydride-abstracting agents, but recent efforts illustrate the potential for weaker ketone and triaryl borane oxidants, which will be covered at the end of the review.
Collapse
Affiliation(s)
- Jenna L Miller
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | - Jean-Marc I A Lawrence
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | | | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| |
Collapse
|