1
|
Liu G, Gao K, Yao T, Hu H, Wang Z. Iron-Catalyzed Radical Allylic Substitution of Unprotected Allylic Alcohols. Angew Chem Int Ed Engl 2025:e202500781. [PMID: 40323190 DOI: 10.1002/anie.202500781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/21/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Allylic substitution reactions are essential in organic synthesis, enabling the transformation of allylic reagents into diverse alkenes. Traditional methods, which typically operate through ionic pathways, often require substrate preactivation to address high C─O bond dissociation energies, leading to challenges in regioselectivity and limited substrate compatibility. Here, we introduce an iron-catalyzed radical pathway for allylic substitution that directly activates unprotected allylic alcohols, leveraging the redox and oxophilic properties of low-valent iron to promote selective C─O bond cleavage and allylic transposition. This radical approach achieves high regio- and stereoselectivity, providing access to a broad array of di-, tri-, and tetra-substituted alkenes with moderate to excellent yields and exceptional E/Z selectivity. Mechanistic studies confirm that the iron catalyst generates radical intermediates and mediates efficient dehydroxylation, enabling this direct transformation without protective groups or Lewis acid activators. The method's versatility is demonstrated through a broad substrate scope, including complex natural derivatives and functionalized alkyl halides, along with successful gram-scale synthesis and downstream derivatization. This iron-catalyzed radical pathway offers a sustainable and efficient alternative to conventional ionic methods, expanding the scope of allylic substitutions and advancing radical-based methodologies in synthetic chemistry.
Collapse
Affiliation(s)
- Gang Liu
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Ke Gao
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Tianbing Yao
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Hui Hu
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, 310030, China
| | - Zhaobin Wang
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, 310030, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
2
|
Wang Z, Liang M, Zhang D, Cai W, Xiang Z, Feng M, Ke M, Mai S. Rh-Catalyzed Coupling of Cyclic 1,3-Dicarbonyl-Derived Iodonium Ylides with Cyclopropanols. Org Lett 2025; 27:4129-4134. [PMID: 40210475 DOI: 10.1021/acs.orglett.5c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Herein, we report a modular α-monoalkylation of cyclic 1,3-dicarbonyls with cyclopropyl alcohols through a cyclic iodonium ylide strategy. This approach is general, base-free, operationally simple, and suitable for various medically important (hetero)cyclic 1,3-dicarbonyls. A wide range of cyclopropyl alcohols, easily prepared from feedstock chemicals, can serve as modular and complement alkylating agents. Importantly, the newly formed carbonyl groups in the resulting products provide a versatile platform for numerous synthetic applications.
Collapse
Affiliation(s)
- Zongye Wang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Mingxuan Liang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongyang Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wenteng Cai
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zequan Xiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Mingtao Feng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Shaoyu Mai
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, China
| |
Collapse
|
3
|
Ling X, Zhao Q, Liu X, Wang Y, Su Y, Yang F, Zhang Z, Wang H, Shang Y, Fu L. Deoxygenative Cyclopropanation of Aldehydes with Acyl-Stabilized Sulfur Ylides. Chemistry 2025; 31:e202500471. [PMID: 39989449 DOI: 10.1002/chem.202500471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 02/25/2025]
Abstract
Herein, we described a novel [1+1+1] deoxygenative cyclopropanation between sulfur ylides and aldehydes, which is distinctive from traditional epoxidation reactions. The method offers a straightforward approach for the synthesis of highly stereoselective, functionalized, and structurally diverse tertiary cyclopropyl thioethers. The reaction demonstrates a broad substrate scope and excellent compatibility with various functional groups, rendering it particularly suitable for the late-stage modifications of pharmaceuticals and natural products, as well as the synthesis of structurally diverse compounds. Additionally, β,β-disubstituted enals can also engage in the deoxygenative cyclopropanation reaction, instead of undergoing classic cyclopropanation through a Michael addition reaction-induced cyclization with sulfur ylides, thus yielding synthetically important vinylcyclopropanes with excellent chemoselectivity and diastereoselectivity.
Collapse
Affiliation(s)
- Xunlan Ling
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Quansheng Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Xinyu Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yan Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yin Su
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Feihu Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hui Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Liang Fu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
4
|
Bertus P, Caillé J. Advances in the Synthesis of Cyclopropylamines. Chem Rev 2025; 125:3242-3377. [PMID: 40048498 DOI: 10.1021/acs.chemrev.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Cyclopropylamines are an important subclass of substituted cyclopropanes that combine the unique electronic and steric properties of cyclopropanes with the presence of a donor nitrogen atom. In addition to their presence in a diverse array of biologically active compounds, cyclopropylamines are utilized as important synthetic intermediates, particularly in ring-opening or cycloaddition reactions. Consequently, the synthesis of these compounds has constituted a significant research topic, as evidenced by the abundant published synthetic methods. In addition to the widely used Curtius rearrangement, classical cyclopropanation methods have been adapted to integrate a nitrogen function (Simmons-Smith reaction, metal-catalyzed reaction of diazo compounds on olefins, Michael-initiated ring-closure reactions) with significant advances in enantioselective synthesis. More recently, specific methods have been developed for the preparation of the aminocyclopropane moiety (Kulinkovich reactions applied to amides and nitriles, addition to cyclopropenes, metal-catalyzed reactions involving C-H functionalization, ...). The topic of this review is to present the different methods for the preparation of cyclopropylamine derivatives, with the aim of covering the methodological advances as best as possible, highlighting their scope, their stereochemical aspects and future trends.
Collapse
Affiliation(s)
- Philippe Bertus
- Institut des Molécules et Matériaux du Mans, IMMM, CNRS UMR 6283, Le Mans Université, 72000 Le Mans, France
| | - Julien Caillé
- Institut de Chimie Organique et Analytique, ICOA, CNRS UMR 7311, University of Orléans, 45100 Orléans, France
| |
Collapse
|
5
|
Yi W, Xu PC, He T, Shi S, Huang S. Organoelectrocatalytic cyclopropanation of alkenyl trifluoroborates with methylene compounds. Nat Commun 2024; 15:9645. [PMID: 39511173 PMCID: PMC11543836 DOI: 10.1038/s41467-024-54082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Cyclopropanes are not only privileged motifs in many natural products, agrochemicals, and pharmaceuticals, but also highly versatile intermediates in synthetic chemistry. As such, great effort has been devoted to the cyclopropane construction. However, novel catalytic methods for cyclopropanation with two abundant substrates, mild conditions, high functional group tolerance, and broad scope are still highly desirable. Herein, we report an intermolecular electrocatalytic cyclopropanation of alkenyl trifluoroborates with methylene compounds. The reaction uses simple diphenyl sulfide as the electrocatalyst under base-free conditions. And thus, a broad scope of various methylene compounds as well as vinyltrifluoroborates is demonstrated, including styrenyl, 1,3-dienyl, fluorosulfonyl, and base-sensitive substrates. Preliminary mechanistic studies are presented, revealing the critical role of the boryl substituent to facilitate the desired pathway and the role of water as the hydrogen atom source.
Collapse
Affiliation(s)
- Wei Yi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Peng-Cheng Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuai Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China.
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
6
|
Ye Z, Zhang Y, Guo G, Shao X, Wu JR. Silver-Catalyzed 1,2-Thiosulfonylation of Alkenes: Development of a Nucleophilic d3-Methylthiolating Reagent. J Org Chem 2024; 89:14369-14383. [PMID: 39323108 DOI: 10.1021/acs.joc.4c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Development of robust d3-methylthiolating reagents represents an attractive synthetic method to access deuterated molecules in the field of drug discovery. Here, we report a straightforward strategy to prepare electrophilic S-methyl-d3 arylsulfonothioates in one-step without column purification. These reagents exhibit good radical reactivity toward silver-catalyzed vicinal thiosulfonylation of alkenes or 1,6-enynes on water. As a result, simultaneous incorporation of both SCD3 and ArSO2 units into unsaturated carbon-carbon bonds with 100% atom economy has been established. Moreover, the ATRA adducts with >99% D incorporation can serve as nucleophilic d3-methylthiolating synthons via retro-Michael addition under mild basic conditions, providing a good alternative in trideuteromethylthiolating alkyl iodides to access corresponding trideuteromethyl sulfides with high efficiency.
Collapse
Affiliation(s)
- Zhiyong Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Guofang Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Ji-Rong Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Bousrez G, Harakat D, Chevreux S, Déchamps-Olivier I, Jaroschik F. Choosing between Ti(II) and Ti(III): selective reduction of titanocene dichloride by elemental lanthanides. Dalton Trans 2024; 53:15595-15601. [PMID: 39230327 DOI: 10.1039/d4dt02004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The reduction of titanocene dichloride Cp2TiCl2 with lanthanide metals has led to the discovery of a surprising lanthanide effect: while with most lanthanides, a divalent [Cp2Ti] equivalent was obtained, the use of samarium or ytterbium only led to the reduction to trivalent [Cp2TiCl]-type complexes, including the structurally characterized heterobimetallic complex [Cp2Ti(μ-Cl)2SmCl2(THF)3]. These results were corroborated by reactivity studies (alkyne coupling and radical reactions), EPR spectroscopy and electrospray mass spectrometry, providing new insights into the reduction chemistry of lanthanide metals.
Collapse
Affiliation(s)
- Guillaume Bousrez
- Université de Reims Champagne Ardenne, CNRS UMR 7312, ICMR, URCATech, 51100 Reims, France
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Dominique Harakat
- Université de Reims Champagne Ardenne, CNRS UMR 7312, ICMR, URCATech, 51100 Reims, France
| | - Sylviane Chevreux
- Université de Reims Champagne Ardenne, CNRS UMR 7312, ICMR, URCATech, 51100 Reims, France
- Institut de Recherche de Chimie Paris, UMR CNRS 8247, Chimie ParisTech, PSL University, 75005 Paris, France
| | | | - Florian Jaroschik
- Université de Reims Champagne Ardenne, CNRS UMR 7312, ICMR, URCATech, 51100 Reims, France
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France.
| |
Collapse
|
8
|
Yu K, Nie Q, Chen Q, Liu W. Manganese-catalyzed cyclopropanation of allylic alcohols with sulfones. Nat Commun 2024; 15:6798. [PMID: 39122745 PMCID: PMC11315923 DOI: 10.1038/s41467-024-51188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cyclopropanes are among the most important structural units in natural products, pharmaceuticals, and agrochemicals. Herein, we report a manganese-catalyzed cyclopropanation of allylic alcohols with sulfones as carbene alternative precursors via a borrowing hydrogen strategy under mild conditions. Various allylic alcohols and arylmethyl trifluoromethyl sulfones work efficiently in this borrowing hydrogen transformation and thereby deliver the corresponding cyclopropylmethanol products in 58% to 99% yields. Importantly, a major benefit of this transformation is that the versatile free alcohol moiety is retained in the resultant products, which can undergo a wide range of downstream transformations to provide access to a series of functional molecules. Mechanistic studies support a sequential reaction mechanism that involves catalytic dehydrogenation, Michael addition, cyclization, and catalytic hydrogenation.
Collapse
Affiliation(s)
- Ke Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Qin Nie
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Weiping Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China.
| |
Collapse
|
9
|
Liu M, Uyeda C. Redox Approaches to Carbene Generation in Catalytic Cyclopropanation Reactions. Angew Chem Int Ed Engl 2024; 63:e202406218. [PMID: 38752878 DOI: 10.1002/anie.202406218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 06/15/2024]
Abstract
Transition metal-catalyzed carbene transfer reactions have a century-old history in organic chemistry and are a primary method for the synthesis of cyclopropanes. Much of the work in this field has focused on the use of diazo compounds and related precursors, which can transfer a carbene fragment to a catalyst with concomitant loss of a stable byproduct. Despite the utility of this approach, there are persistent limitations in the scope of viable carbenes, most notably those lacking stabilizing substituents. By coupling carbene transfer chemistry with two-electron redox cycles, it is possible to expand the available starting materials that can be used as carbene precursors. In this Minireview, we discuss emerging catalytic reductive cyclopropanation reactions using either gem-dihaloalkanes or carbonyl compounds. This strategy is inspired by classic stoichiometric transformations, such as the Simmons-Smith cyclopropanation and the Clemmensen reduction, but instead entails the formation of a catalytically generated transition metal carbene or carbenoid. We also present recent efforts to generate carbenes directly from methylene (CR2H2) groups via a formal 1,1-dehydrogenation. These reactions are currently restricted to substrates containing electron-withdrawing substituents, which serve to facilitate deprotonation and subsequent oxidation of the anion.
Collapse
Affiliation(s)
- Mingxin Liu
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Hu J, Tang M, Wang J, Wu Z, Friedrich A, Marder TB. Photocatalyzed Borylcyclopropanation of Alkenes with a (Diborylmethyl)iodide Reagent. Angew Chem Int Ed Engl 2023; 62:e202305175. [PMID: 37527975 DOI: 10.1002/anie.202305175] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Cyclopropane skeletons play a prominent role in the development of organic synthesis and pharmaceutical chemistry. Herein, we report the design and synthesis of a stable, multifunctional (diborylmethyl)iodide reagent (CHI(Bpin)2 ) for the photoinduced cyclopropanation of alkenes, providing an array of 1,2-substituted cyclopropylboronates in good yields. This α-haloboronic ester can be readily synthesized on a multigram scale from commercially available starting materials. Furthermore, the protocol displays high chemo- and diastereoselectivity, excellent functional-group tolerance, and allows for late-stage borylcyclopropanation of complex molecules. Mechanistic studies reveal that the borylcyclopropanation proceeds through a radical addition/polar cyclization pathway mediated by the photocatalyst fac-Ir(ppy)3 and visible light.
Collapse
Affiliation(s)
- Jiefeng Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Man Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
| | - Jing Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
| | - Zhu Wu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
11
|
Poudel DP, Pokhrel A, Tak RK, Shankar M, Giri R. Photosensitized O 2 enables intermolecular alkene cyclopropanation by active methylene compounds. Science 2023; 381:545-553. [PMID: 37535731 PMCID: PMC11216814 DOI: 10.1126/science.adg3209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Cyclopropanes are key features in many preclinical, clinical, and commercial drugs, as well as natural products. The most prolific technique for their synthesis is the metal-catalyzed reaction of an alkene with a diazoalkane, a highly energetic reagent requiring stringent safety precautions. Discovery of alternative innocuous reagents remains an ongoing challenge. Herein, we report a simple photoredox-catalyzed intermolecular cyclopropanation of unactivated alkenes with active methylene compounds. The reaction proceeds in neutral solvent under air or dioxygen (O2) with a photoredox catalyst excited by blue light-emitting diode light and an iodine co-catalyst that is either added as molecular iodine or generated in situ from alkyl iodides. Mechanistic investigations indicate that photosensitized O2 plays a vital role in the generation of carbon-centered radicals for both the addition of active methylene compounds to alkenes and the ring closure.
Collapse
Affiliation(s)
- Dhruba P. Poudel
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | | | | - Majji Shankar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
12
|
Ni J, Xia X, Gu D, Wang Z. Ti-Catalyzed Modular Ketone Synthesis from Carboxylic Derivatives and gem-Dihaloalkanes. J Am Chem Soc 2023. [PMID: 37365677 DOI: 10.1021/jacs.3c04009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Ketones are ubiquitous in organic synthesis. However, the general method to convert widely available carboxylic acids, unactivated esters, and amides into ketones remains elusive. Herein, we describe the Ti-catalyzed modular ketone synthesis from carboxylic derivatives and easily accessed gem-dihaloalkanes. Notably, this protocol could achieve the direct catalytic olefination of carboxylic acids. This method features a sequence of olefination and electrophilic transformation and good functional group compatibility and allows rapid access to various functionalized ketones. Preliminary mechanistic studies provide insights into the reaction pathway and support the intermediacy of plausible alkylidene titanocene and gem-bimetallic complexes.
Collapse
Affiliation(s)
- Jiabin Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Xiaowen Xia
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Danyu Gu
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
13
|
Williams OP, Chmiel AF, Mikhael M, Bates DM, Yeung CS, Wickens ZK. Practical and General Alcohol Deoxygenation Protocol. Angew Chem Int Ed Engl 2023; 62:e202300178. [PMID: 36840940 PMCID: PMC10121858 DOI: 10.1002/anie.202300178] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Herein, we describe a practical protocol for the removal of alcohol functional groups through reductive cleavage of their benzoate ester analogs. This transformation requires a strong single electron transfer (SET) reductant and a means to accelerate slow fragmentation following substrate reduction. To accomplish this, we developed a photocatalytic system that generates a potent reductant from formate salts alongside Brønsted or Lewis acids that promote fragmentation of the reduced intermediate. This deoxygenation procedure is effective across structurally and electronically diverse alcohols and enables a variety of difficult net transformations. This protocol requires no precautions to exclude air or moisture and remains efficient on multigram scale. Finally, the system can be adapted to a one-pot benzoylation-deoxygenation sequence to enable direct alcohol deletion. Mechanistic studies validate that the role of acidic additives is to promote the key C(sp3 )-O bond fragmentation step.
Collapse
Affiliation(s)
- Oliver P. Williams
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Myriam Mikhael
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Desiree M. Bates
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Charles S. Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| |
Collapse
|
14
|
An unexpected reaction of indole derivatives and EAA catalyzed with InCl3. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
15
|
Palomo E, Sharma AK, Wang Z, Jiang L, Maseras F, Suero MG. Generating Fischer-Type Rh-Carbenes with Rh-Carbynoids. J Am Chem Soc 2023; 145:4975-4981. [PMID: 36812070 PMCID: PMC9999426 DOI: 10.1021/jacs.3c00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We describe the first catalytic generation of Fischer-type acyloxy Rh(II)-carbenes from carboxylic acids and Rh(II)-carbynoids. This novel class of transient donor/acceptor Rh(II)-carbenes evolved through a cyclopropanation process providing access to densely functionalized cyclopropyl-fused lactones with excellent diastereoselectivity. DFT calculations allowed the analysis of the properties of Rh(II)-carbynoids and acyloxy Rh(II)-carbenes as well as the characterization of the mechanism.
Collapse
Affiliation(s)
- Eric Palomo
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel.lí Domingo, 1, Tarragona 43007, Spain
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Zhaofeng Wang
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
16
|
Gao Q, Xu S. Site- and Stereoselective C(sp 3 )-H Borylation of Strained (Hetero)Cycloalkanols Enabled by Iridium Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218025. [PMID: 36581587 DOI: 10.1002/anie.202218025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Transition metal-catalyzed site- and stereoselective C-H activation of strained (hetero)cycloalkanes remains a formidable challenge. We herein report a carbamate-directed iridium-catalyzed asymmetric β-C(sp3 )-H borylation of cyclopropanol derivatives. A variety of densely functionalized cyclopropanols were obtained in good enantioselectivities via desymmetrization and kinetic resolution. In addition, site-selective C(sp3 )-H borylation of methine groups furnished α-borylated (hetero)cycloalkanols in moderate to good yields. The synthetic utility of the method was further shown in a gram-scale synthesis and diverse downstream transformations of borylated products.
Collapse
Affiliation(s)
- Qian Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|