1
|
Nielsen VRM, Aalling-Frederiksen O, Jensen KMØ, Sørensen TJ. Exploring the Crystallization of Lanthanum(III) and Neodymium(III) Hydroxides from Solution. Inorg Chem 2025; 64:7286-7299. [PMID: 40192105 DOI: 10.1021/acs.inorgchem.4c04907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Understanding the mechanics of crystallization from solution is crucial for advancing material discovery and design. Studying these complex processes requires a combination of experimental techniques. Here, the crystallization of lanthanum(III)- and neodymium(III) hydroxides was studied with in situ and ex situ X-ray techniques in combination with pair distribution function analysis, scanning electron microscopy, light scattering, pH titrations, simulations, and optical spectroscopy. Starting from the Ln(III) aqua ions in nitric acid, the pH is increased to start the precipitation of hydroxides. In situ optical spectroscopy and potentiometry revealed that at pH = 6, an initial gel phase with a composition of [Ln(NO3)(OH)(H2O)z]OH was formed. At pH > 10, the nitrate ligands were replaced by hydroxides, resulting in gels with a composition of [Ln(OH)2(H2O)7]OH. Upon washing and dehydration, X-ray scattering and Rietveld analysis showed that the gels crystallize into Ln(OH)2(NO3)(H2O)z at pH < 10 and Ln(OH)3 at pH > 10. Ln(OH)3 was obtained at all pH values if hydrothermal treatment was performed prior to the dehydration. In situ total X-ray scattering and pair distribution function analysis was used to show that no crystallization occurs in solution and that the hydrothermal treatment removes water from the gel. The size and morphology of the isolated lanthanide(III) hydroxides were found to be dependent on the pH value, but our results showed that the gel structure is found in all cases, suggesting that crystallization occurs within gel particles and not in solution.
Collapse
Affiliation(s)
- Villads R M Nielsen
- Department of Chemistry and Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Olivia Aalling-Frederiksen
- Department of Chemistry and Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Thomas Just Sørensen
- Department of Chemistry and Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Guillam E, Duvail M, Žiberna L, Dufrêche JF. Understanding the Aggregation of Lanthanum(III) Nitrate Clusters in Pure Methanol: A Molecular Dynamics Investigation. J Phys Chem B 2025; 129:3869-3878. [PMID: 40176357 DOI: 10.1021/acs.jpcb.4c08316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
A detailed analysis of the structure and speciation of La3+ clusters in the 0.1 mol L-1 La(NO3)3 salt methanol (MeOH) solution has been performed by means of molecular dynamics (MD) simulations. The time distribution and NO3-/MeOH ligand composition of these clusters have been computed using graph theory techniques. These analyses revealed the formation of branched-like polynuclear clusters in the solution, the predominant clusters being the 3, 7, and 8 La3+ clusters. In these clusters, the La3+ cations are bound by "monodentate" nitrate bridges. Moreover, the mechanism of aggregation of the La3+ clusters has been examined with the development of a 3-step model. Finally, the origin of the aggregation process has been identified by estimating the binding constant for the ion pair La3+-NO3- using the Bjerrum theory of dilute solutions, with pK° = 5.32 at 25 °C. The low value of the dielectric constant of methanol promotes the binding of the ion pair La3+-NO3- and the nitrato-bridging polymerization, resulting in the formation of clusters.
Collapse
Affiliation(s)
- Erwann Guillam
- ICSM, University of Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze 30207, France
| | - Magali Duvail
- ICSM, University of Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze 30207, France
| | - Lara Žiberna
- ICSM, University of Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze 30207, France
| | | |
Collapse
|
3
|
Yi L, Wu S, Ren G, Zhou Q, Li P, Wang Y, Tian X, He D, Pan Q. Glyphosate detection based on Eu coordination polymer through competitive coordination. Food Chem 2025; 463:141554. [PMID: 39388882 DOI: 10.1016/j.foodchem.2024.141554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Glyphosate is a widely used herbicide in agriculture, leading to residues in food and water environments. These residues have been associated with heart disease and neurotoxicity. Therefore, it is urgent to develop new types of sensors for the detection of glyphosate residues. Here, a new coordination polymer, named as HNU-89, is synthesized by the assembly of Eu3+ and coumarin-3-carboxylic acid (HCCA). Benefiting from the hydrophobic ligands, HNU-89 can maintain its structure at pH 2-11. In view of that phosphoric groups in glyphosate molecules can coordinate with Eu3+ and compete with the HCCA ligand, according to the competitive coordination, the interaction weakens the red fluorescence of HNU-89 simultaneously enhancing the blue fluorescence of HCCA, which achieves the ratio fluorescence response for glyphosate detection. The limit of detection (LOD) is 0.08 ppm, meeting the requirements as a sensor. Furthermore, HNU-89 was utilized to detect glyphosate in soybean, corn, rice and tap water.
Collapse
Affiliation(s)
- Linglong Yi
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shangzai Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Guojian Ren
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Qi Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Ping Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Yuan Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xudong Tian
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Danfeng He
- School of Science, Qiongtai Normal University, Haikou 571127, China.
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Chu C, Wang Y, Ma Y. Unraveling the Growth Mechanism of Chiral Inorganic Nanocrystals via High-Resolution Electron Microscopy. J Am Chem Soc 2024; 146:35339-35346. [PMID: 39668627 DOI: 10.1021/jacs.4c13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Chiral inorganic nanomaterials have attracted broad interest due to their intriguing chirality-dependent performances. However, there is a lack of experimental studies and atomic-level evidence on their growth mechanism. Herein, high-crystalline chiral tellurium nanowires were synthesized in an alkali solution by using tellurium oxide as an inorganic source and hydrazine hydrate as a reductant. The evolution of the nucleus and crystalline domains was manifested using high-resolution electron microscopy and electron diffraction, demonstrating a nonclassical growth path, that is, from monomers to nanowires of clusters and then nanocrystals. Furthermore, chiral inducers, d/l-penicillamine, were used at different stages to study their effects on the bias of two enantiomorphic structures with different chiral space groups. A similar nonclassical growth mechanism was also found in the synthesis of chiral terbium phosphate nanowires, demonstrating a common growth phenomenon in chiral inorganic nanomaterials. This work provides novel insights into the formation of chiral nanomaterials, benefiting the further controllable synthesis of various chiral nanomaterials.
Collapse
Affiliation(s)
- Chaoyang Chu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yao Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Ceccon L, Cavalli E, Ruggieri S, Bettinelli M, Piccinelli F. Circularly Polarized Luminescence from Pure and Eu-Doped Trigonal TbPO 4· nH 2O Nanocrystals. Inorg Chem 2024; 63:13636-13643. [PMID: 38984766 DOI: 10.1021/acs.inorgchem.4c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
In this contribution, we describe the preparation, by means of a precipitation reaction from aqueous solution at 40 °C, and the structural characterization of nanocrystalline powders of trigonal Tb1-xEuxPO4·nH2O (with x = 0, 0.005, 0.01, 0.05, and 0.1; n tentatively assigned as 0.67) which crystallize in the two possible P3121 or P3221 enantiomorphic space groups. While the volume of the crystal lattice is not significantly affected by the Tb3+/Eu3+ substitution, the average crystallite size seems to depend on the Eu3+ dopant concentration and ranges from 13 to 30 nm. The desired handedness of the crystals has been induced by using, during the synthesis, one of the two possible enantiomers of tartaric acid (l or d). The analysis of the luminescence excitation and emission spectra, together with the decay kinetics of the 5D4 Tb3+ excited state, suggests the presence of a very efficient Tb3+ → Eu3+ energy transfer process in the Eu3+-doped orthophosphates. Upon excitation of Tb3+ ions at 368 nm, the enantiomorphic powders grown with l- or d-tartaric acid (i.e., l-TbPO4·0.67H2O/d-TbPO4·0.67H2O, l-Tb0.995Eu0.005PO4·0.67H2O/d-Tb0.995Eu0.005PO4·0.67H2O, and l-Tb0.9Eu0.1PO4·0.67H2O/d-Tb0.9Eu0.1PO4·0.67H2O) exhibited mirror circularly polarized luminescence signals in the visible spectral region (in the green and/or in the red).
Collapse
Affiliation(s)
- Leonardo Ceccon
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Enrico Cavalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, Parma 43124, Italy
| | - Silvia Ruggieri
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Marco Bettinelli
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, Verona 37134, Italy
| |
Collapse
|
6
|
Xiao F, Li Y, Xia Y, Zhang J, Wang C, Li Z, Yang S, Dong S, Wang Y. Uncovering the role of free lanthanum (La 3+) ions and La oligomer on the surface of La (oxy)hydroxide particles for phosphate removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174747. [PMID: 39004361 DOI: 10.1016/j.scitotenv.2024.174747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
La (oxy)hydroxide-based materials have been recognized as promising adsorbents for aqueous phosphate (P) removal. However, comprehending the adsorption behavior of P onto La (oxy)hydroxide particles remains challenging, given the heterogeneous low-crystalline surface encompassing La oligomers and free La3+ ions. In this study, a hydrogen (H) bond capping method was developed to construct La (oxy)hydroxide oligomers (LHOs) to simulate the low-crystalline La on the surface of La (oxy)hydroxide particles. The P uptake capacity was compared among free La3+ ions, LHOs, and La nanoparticle (La-NP) with maximum capacities of 1967.3 ± 30.8 mg/g, 461.1 ± 53.7 mg/g and 62.5 ± 6.0 mg/g, respectively. The FT-IR, Raman, in situ-XRD and XPS deconvolution analyses revealed that the removal of P by free La3+ ions mainly involve the process of chemical precipitation to form LaPO4·0.5H2O. Conversely, the elimination of P by LHOs is primarily attributed to inner-sphere complexation and hydroxyl exchange effect between LaOOH and P. Based on this study, the free La3+ ions and La oligomers on the surface of La (oxy)hydroxide particles play a primary role in P adsorption. These results also suggest that the successively decreased adsorption capacity of La (oxy)hydroxide-based adsorbents in the continuously adsorption/desorption cycles might be due to the irreversible inactivation and recrystallization of free La3+ ions and La oligomers on the surface.
Collapse
Affiliation(s)
- Feng Xiao
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Yongqi Li
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuanchen Xia
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Jianing Zhang
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Changyu Wang
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Zihan Li
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Shaoxia Yang
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuoxun Dong
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
He M, Li R, Cheng C, Liu C, Zhang B. Microenvironment regulation breaks the Faradaic efficiency-current density trade-off for electrocatalytic deuteration using D 2O. Nat Commun 2024; 15:5231. [PMID: 38898044 PMCID: PMC11187139 DOI: 10.1038/s41467-024-49544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
The high Faradaic efficiency (FE) of the electrocatalytic deuteration of organics with D2O at a large current density is significant for deuterated electrosynthesis. However, the FE and current density are the two ends of a seesaw because of the severe D2 evolution side reaction at nearly industrial current densities. Herein, we report a combined scenario of a nanotip-enhanced electric field and surfactant-modified interface microenvironment to enable the electrocatalytic deuteration of arylacetonitrile in D2O with an 80% FE at -100 mA cm-2. The increased concentration with low activation energy of arylacetonitrile due to the large electric field along the tips and the accelerated arylacetonitrile transfer and suppressed D2 evolution by the surfactant-created deuterophobic microenvironment contribute to breaking the trade-off between a high FE and large current density. Furthermore, the application of our strategy in other deuteration reactions with improved Faradaic efficiencies at -100 mA cm-2 rationalizes the design concept.
Collapse
Affiliation(s)
- Meng He
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Rui Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Chuanqi Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Cuibo Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
8
|
Chen L, Lu J, Li X, Luan N, Song Y, Yang S, Yuan M, Qin H, Zhu H, Dong X, Li K, Zhang D, Chen L, Dai X, Wang Y, Wang Y, Xu C, Chai Z, Wang S. Isotope Effect-Enabled Crystal Enlargement in Metal-Organic Frameworks. J Am Chem Soc 2024; 146:6697-6705. [PMID: 38419157 DOI: 10.1021/jacs.3c12866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Synthesizing large metal-organic framework (MOF) single crystals has garnered significant research interest, although it is hindered by the fast nucleation kinetics that gives rise to numerous small nuclei. Given the different chemical origins inherent in various types of MOFs, the development of a general approach to enhancing their crystal sizes presents a formidable challenge. Here, we propose a simple isotopic substitution strategy to promote size growth in MOFs by inhibiting nucleation, resulting in a substantial increase in the crystal volume ranging from 1.7- to 165-fold. Impressively, the crystals prepared under optimized conditions by normal approaches can be further enlarged by the isotope effect, yielding the largest MOF single crystal (2.9 cm × 0.48 cm × 0.23 cm) among the one-pot synthesis method. Detailed in situ characterizations reveal that the isotope effect can retard crystallization kinetics, establish a higher nucleation energy barrier, and consequently generate fewer nuclei that eventually grow larger. Compared with the smaller crystals, the isotope effect-enlarged crystal shows 33% improvement in the X-ray dose rate detection limit. This work enriches the understanding of the isotope effect on regulating the crystallization process and provides inspiration for exploring potential applications of large MOF single crystals.
Collapse
Affiliation(s)
- Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Junhao Lu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaoqi Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ni Luan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yiting Song
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shenghai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Haoming Qin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Huifang Zhu
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Xue Dong
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Long Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Wang W, Zhang W, Deng C, Sheng H, Zhao J. Accelerated Photocatalytic Carbon Dioxide Reduction and Water Oxidation under Spatial Synergy. Angew Chem Int Ed Engl 2024; 63:e202317969. [PMID: 38155103 DOI: 10.1002/anie.202317969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Photocatalytic conversion of CO2 and H2 O into fuels and oxygen is a highly promising solution for carbon-neutral recycling. Traditionally, researchers have studied CO2 reduction and H2 O oxidation separately, overlooking potential synergistic interplay between these processes. This study introduces an innovative approach, spatial synergy, which encourages synergistic progress by bringing the two half-reactions into atomic proximity. To facilitate this, we developed a defective ZnIn2 S4 -supported single-atom Cu catalyst (Cu-SA/D-ZIS), which demonstrates remarkable catalytic performance with CO2 reduction rates of 112.5 μmol g-1 h-1 and water oxidation rates of 52.3 μmol g-1 h-1 , exhibiting a six-fold enhancement over D-ZIS. The structural characterization results indicated that the trapping effect of vacancy associates on single-atom copper led to the formation of an unsaturated coordination structure, Cu-S3 , consequently giving rise to the CuZn 'VS ⋅⋅VZn " defect complexes. FT-IR studies coupled with theoretical calculations reveal the spatially synergistic CO2 reduction and water oxidation on CuZn 'VS ⋅⋅VZn ", where the breakage of O-H in water oxidation is synchronized with the formation of *COOH, significantly lowering the energy barrier. Notably, this study introduces and, for the first time, substantiates the spatial synergy effect in CO2 reduction and H2 O oxidation through a combination of experimental and theoretical analyses, providing a fresh insight in optimizing photocatalytic system.
Collapse
Affiliation(s)
- Wei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Wanyi Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chaoyuan Deng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hua Sheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jincai Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
10
|
Su Y, Otake KI, Zheng JJ, Xu H, Wang Q, Liu H, Huang F, Wang P, Kitagawa S, Gu C. Switching molecular recognition selectivities by temperature in a diffusion-regulatory porous material. Nat Commun 2024; 15:144. [PMID: 38168057 PMCID: PMC10761840 DOI: 10.1038/s41467-023-44424-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Over the long history of evolution, nature has developed a variety of biological systems with switchable recognition functions, such as the ion transmissibility of biological membranes, which can switch their ion selectivities in response to diverse stimuli. However, developing a method in an artificial host-guest system for switchable recognition of specific guests upon the change of external stimuli is a fundamental challenge in chemistry because the order in the host-guest affinity of a given system hardly varies along with environmental conditions. Herein, we report temperature-responsive recognition of two similar gaseous guests, CO2 and C2H2, with selectivities switched by temperature change by a diffusion-regulatory mechanism, which is realized by a dynamic porous crystal featuring ultrasmall pore apertures with flip-flop locally-motive organic moiety. The dynamic local motion regulates the diffusion process of CO2 and C2H2 and amplifies their rate differences, allowing the crystal to selectively adsorb CO2 at low temperatures and C2H2 at high temperatures with separation factors of 498 (CO2/C2H2) and 181 (C2H2/CO2), respectively.
Collapse
Affiliation(s)
- Yan Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Haiming Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Fei Huang
- ReadCrystal Biotech Co., Ltd., Suzhou, 215505, P. R. China
| | - Ping Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| |
Collapse
|
11
|
Brito ML, Huband S, Walker M, Walton RI, de Sousa Filho PC. Nanoporous YVO 4 as a luminescent host for probing molecular encapsulation. Chem Commun (Camb) 2023; 59:11393-11396. [PMID: 37668052 DOI: 10.1039/d3cc03501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Control of phase separation of VO43- and rare earth precursors in reverse microemulsions afforded ∼35 nm YVO4 nanoparticles with functionalisable ∼7 ± 3 nm nanopores. Doping by Eu3+ allowed luminescent probing of interfacial crystallisation while xylenol orange absorption showed molecular encapsulation in particle cavities. This provides potential multifunctional systems combining UV-Vis-NIR luminescence and (photo)active molecules for optical sensing.
Collapse
Affiliation(s)
- Milena Lima Brito
- Department of Inorganic Chemistry, Institute of Chemistry, University of Campinas (Unicamp), R. Monteiro Lobato, 270, 13083-970, Campinas, São Paulo, Brazil.
| | - Steven Huband
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Marc Walker
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Richard I Walton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Paulo C de Sousa Filho
- Department of Inorganic Chemistry, Institute of Chemistry, University of Campinas (Unicamp), R. Monteiro Lobato, 270, 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
12
|
Noble-Terán ME, Cruz JM, Cruz-Rosas HI, Buhse T, Micheau JC. A Complex Reaction Network Model for Spontaneous Mirror Symmetry Breaking in Viedma Deracemizations. Chemphyschem 2023; 24:e202300318. [PMID: 37428998 DOI: 10.1002/cphc.202300318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Attrition-enhanced chiral symmetry breaking in crystals, known as Viedma deracemization, is a promising method for converting racemic solid phases into enantiomerically pure ones under non-equilibrium conditions. However, many aspects of this process remain unclear. In this study, we present a new investigation into Viedma deracemization using a comprehensive kinetic rate equation continuous model based on classical primary nucleation theory, crystal growth, and Ostwald ripening. Our approach employs a fully microreversible kinetic scheme with a size-dependent solubility following the Gibbs-Thomson rule. To validate our model, we use data from a real NaClO3 deracemization experiment. After parametrization, the model shows spontaneous mirror symmetry breaking (SMSB) under grinding. Additionally, we identify a bifurcation scenario with a lower and upper limit of the grinding intensity that leads to deracemization, including a minimum deracemization time within this window. Furthermore, this model uncovers that SMSB is caused by multiple instances of concealed high-order autocatalysis. Our findings provide new insights into attrition-enhanced deracemization and its potential applications in chiral molecule synthesis and understanding biological homochirality.
Collapse
Affiliation(s)
- María E Noble-Terán
- Centro de Investigaciones Químicas - IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - José-Manuel Cruz
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, 29050, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Hugo I Cruz-Rosas
- Centro de Investigaciones Químicas - IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - Thomas Buhse
- Centro de Investigaciones Químicas - IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - Jean-Claude Micheau
- Laboratoire des IMRCP, UMR au CNRS No. 5623, Université Paul Sabatier 31062, Toulouse Cedex, France
| |
Collapse
|
13
|
Schwartz G, Hananel U, Markovich G. Circularly polarized and total luminescence as probes of nucleation and growth in chiral nanocrystals. Chirality 2023; 35:104-109. [PMID: 36477935 PMCID: PMC10108007 DOI: 10.1002/chir.23523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Nucleation of crystals as well as their growth is difficult to study experimentally. We have recently demonstrated that chiral Eu3+ -doped terbium phosphate nanocrystals are an interesting system for studying nanocrystal formation mechanisms and chiral symmetry breaking, occurring during their formation, directed by chiral ligands, such as tartaric acid. In this paper, we show how simultaneous, in situ monitoring of both total emission intensity and circularly polarized luminescence magnitude and sign versus time during nanocrystal formation provides considerable information on the mechanisms of nanocrystal nucleation and growth. Specifically, we show that the presence of tartaric acid leads to the formation of chiral prenucleation clusters, which deterministically transform into nanocrystals of a specific handedness. Additionally, we demonstrate that both unseeded and seeded nanocrystal syntheses behave differently mechanistically and that the addition of seed nanocrystals catalyses both enantio-specific (also called secondary nucleation) as well as nonspecific nucleation.
Collapse
Affiliation(s)
- Gal Schwartz
- School of ChemistryTel Aviv UniversityTel AvivIsrael
| | - Uri Hananel
- School of ChemistryTel Aviv UniversityTel AvivIsrael
| | - Gil Markovich
- School of ChemistryTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
14
|
He L, Xu H, Luo J, Ding K, Tan J, Hu J. Interfacial-Shear-Mediated Snowball Assembly of Hotspot-Rich Silver Pompon Architectures for Tailored Surface-Enhanced Raman Scattering Responses. J Phys Chem Lett 2022; 13:10621-10626. [PMID: 36350107 DOI: 10.1021/acs.jpclett.2c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To gain superior signal-enhanced performance, metal nanocrystals serving as building blocks can be collectively assembled into a hierarchically ordered structure for creating multiple hotspots. However, the collaborative assembly of anisotropic crystals to form a hotspot-rich structure remains a challenging task. In this study, controllable shear was introduced to a soft liquid-liquid interface to provide a unique environment for the snowball assembly of silver pompon architectures (Ag-PAs). Micrometer-scale 3D plasmonic Ag pompon architectures composed of densely packed nanoparticles (NPs) are fabricated using shear-mediating crystal growth dynamics. The crystal morphology and size are easily controlled by tuning the interfacial shear and diffusion pathways. The hotspot-rich Ag-PAs with high sensitivity (LOD = 1.1 × 10-13 mol/L) exhibit a superior Raman enhancement performance, which is comparable to some bimetals.
Collapse
Affiliation(s)
- Lili He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hanyun Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jia Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Kuixing Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jun Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| |
Collapse
|