1
|
Saeednia B, Sragow AM, Lin Y, Sheehan CJ, Metlay AS, Gau MR, Dye SA, O'Konski SP, Mallouk TE, Dmochowski IJ. Unusually air-stable copper(i) complexes showing high selectivity for carbon monoxide. Chem Sci 2025; 16:5058-5063. [PMID: 39981040 PMCID: PMC11836626 DOI: 10.1039/d5sc00237k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
We report two Cu(i)-tren host molecules with unusual air-stability, as revealed by strong preference for axial CO binding over bent O2. Spectroscopy, electrochemical, and X-ray crystal structure analyses indicate that the phenyl rotators of the capsule select for small axial ligands.
Collapse
Affiliation(s)
- Borna Saeednia
- Department of Chemistry, University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Aria M Sragow
- Department of Chemistry, University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Yannan Lin
- Department of Chemistry, University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Colton J Sheehan
- Department of Chemistry, University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Amy S Metlay
- Department of Chemistry, University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Samantha A Dye
- Department of Chemistry, University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Sarah P O'Konski
- Department of Chemistry, University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| |
Collapse
|
2
|
Seitz T, Walbeck M, Hoffmann A, Herres-Pawlis S. Electron transfer kinetics of a series of copper complexes with tripodal tetradentate guanidine quinolinyl ligands. Dalton Trans 2025; 54:957-965. [PMID: 39588589 DOI: 10.1039/d4dt02917h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Copper complexes of tripodal ligands have been used as model systems for electron transfer proteins for decades, displaying a broad range of electron self-exchange rates. We herein report a group of six tripodal tetradentate triarylamine ligands which display a varying number of guanidine and 2-methylquinolinyl moieties. Their corresponding Cu(I) complexes have been (re)synthesized and studied with regard to their electron transfer properties. While their molecular structures in the solid state are four-coordinate and display an uncommon umbrella distortion, DFT studies of the Cu(II) systems reveal that they gain an additional ligand in the form of a solvent molecule and exhibit a range of possible conformers that likely co-exist in thermal equilibrium. The redox-couples' electron self-exchange rates were analyzed using Marcus theory and vary over four orders of magnitude which cyclic voltammetry studies suggest to be due to a gated addition-oxidation electron transfer mechanism. This mechanism deviates from previously studied systems, likely due to the structural anomalies of the Cu(I) systems. This demonstrates that the chosen path of tripodal model systems can be influenced by molecular design.
Collapse
Affiliation(s)
- Tobias Seitz
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| | - Marcel Walbeck
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| |
Collapse
|
3
|
López-Ortiz M, Bolzonello L, Bruschi M, Fresch E, Collini E, Hu C, Croce R, van Hulst NF, Gorostiza P. Photoelectrochemical Two-Dimensional Electronic Spectroscopy (PEC2DES) of Photosystem I: Charge Separation Dynamics Hidden in a Multichromophoric Landscape. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43451-43461. [PMID: 39121384 PMCID: PMC11345722 DOI: 10.1021/acsami.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
We present a nonlinear spectroelectrochemical technique to investigate photosynthetic protein complexes. The PEC2DES setup combines photoelectrochemical detection (PEC) that selectively probes the protein photogenerated charges output with two-dimensional electronic spectroscopy (2DES) excitation that spreads the nonlinear optical response of the system in an excitation-detection map. PEC allows us to distinguish the contribution of charge separation (CS) from other de-excitation pathways, whereas 2DES allows us to disentangle congested spectral bands and evaluate the exciton dynamics (decays and coherences) of the photosystem complex. We have developed in operando phase-modulated 2DES by measuring the photoelectrochemical reaction rate in a biohybrid electrode functionalized with a plant photosystem complex I-light harvesting complex I (PSI-LHCI) layer. Optimizing the photoelectrochemical current signal yields reliable linear spectra unequivocally associated with PSI-LHCI. The 2DES signal is validated by nonlinear features like the characteristic vibrational coherence at 750 cm-1. However, no energy transfer dynamics is observed within the 450 fs experimental window. These intriguing results are discussed in the context of incoherent mixing resulting in reduced nonlinear contrast for multichromophoric complexes, such as the 160 chlorophyll PSI. The presented PEC2DES method identifies generated charges unlike purely optical 2DES and opens the way to probe the CS channel in multichromophoric complexes.
Collapse
Affiliation(s)
- Manuel López-Ortiz
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, Barcelona 08028, Spain
| | - Luca Bolzonello
- ICFO
- Institut de Ciències Fotòniques, The Barcelona Institute
of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Matteo Bruschi
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Padova 35131, Italy
| | - Elisa Fresch
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Padova 35131, Italy
| | - Elisabetta Collini
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Padova 35131, Italy
| | - Chen Hu
- Biophysics
of Photosynthesis, Department of Physics and Astronomy, Faculty of
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam, HV 1081, The Netherlands
| | - Roberta Croce
- Biophysics
of Photosynthesis, Department of Physics and Astronomy, Faculty of
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam, HV 1081, The Netherlands
| | - Niek F. van Hulst
- ICFO
- Institut de Ciències Fotòniques, The Barcelona Institute
of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA
- Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Pau Gorostiza
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, Barcelona 08028, Spain
- ICREA
- Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
- CIBER-BBN, Barcelona 08028, Spain
| |
Collapse
|
4
|
Heck J, Kucenko A, Hoffmann A, Herres-Pawlis S. Position of substituents directs the electron transfer properties of entatic state complexes: new insights from guanidine-quinoline copper complexes. Dalton Trans 2024; 53:12527-12542. [PMID: 39016043 DOI: 10.1039/d4dt01539h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In a previous study, we showed that the properties and the ability as an entatic state model of copper guanidine quinoline complexes are significantly influenced by a methyl or methyl ester substituent in the 2-position. To prove the importance of the 2-position of the substituent, two novel guanidine quinoline ligands with a methyl or methyl ester substituent in the 4-position and the corresponding copper complexes were synthesized and characterized in this study. The influence of the substituent position on the copper complexes was investigated with various experimental and theoretical methods. The molecular structures of the copper complexes were examined in the solid state by single-crystal X-ray diffraction (SCXRD) and by density functional theory (DFT) calculations indicating a strong dependency on the substituent position compared to the systems substituted in the 2-position from the previous study. Further, the significantly different influence on the donor properties in dependency on the substituent position was analyzed with natural bond orbital (NBO) calculations. By the determination of the redox potentials, the impact on the electrochemical stabilization was examined. With regard to further previously analyzed guanidine quinoline copper complexes, the electrochemical stabilization was correlated with the charge-transfer energies calculated by NBO analysis and ground state energies, revealing the substituent influence and enabling a comparatively easy and accurate possibility for the theoretical calculation of the relative redox potential. Finally, the electron transfer properties were quantified by determining the electron self-exchange rates via the Marcus theory and by theoretical calculation of the reorganization energies via Nelsen's four-point method. The results gave important insights into the dependency between the ability of the copper complexes as entatic state model and the type and position of the substituent.
Collapse
Affiliation(s)
- Joshua Heck
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| | - Anastasia Kucenko
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| |
Collapse
|
5
|
Kc K, Woods T, Olshansky L. Ligand Modifications Produce Two-Step Magnetic Switching in a Cobalt(dioxolene) Complex. Angew Chem Int Ed Engl 2023; 62:e202311790. [PMID: 37733206 PMCID: PMC10615740 DOI: 10.1002/anie.202311790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Mononuclear monodioxolene valence tautomeric (VT) cobalt complexes typically exist in their low spin (l.s.) CoIII (cat2- ) and high spin (h.s.) CoII (sq⋅- ) forms (cat2- =catecholato, and sq⋅- =seminquinonato forms of 3,5-di-t Bu-1,2-dioxolene), which reversibly interconvert via temperature-dependent intramolecular electron transfer. Typically, the remaining four coordination sites on cobalt are supported by a tetradentate ligand whose properties influence the temperature at which VT occurs. We report that replacing one chelating pyridyl arm of tris(2-pyridylmethyl)amine (tpa) with a weaker field ortho-anisole moiety facilitates access to a third magnetic state, and examine a series of related complexes. Variable temperature crystallographic, magnetic, calorimetric, and spectroscopic studies support that this third state is consistent with l.s. CoII (sq⋅- ). Thus, our ligand modifications not only provide access to the VT transition from l.s. CoIII (cat2- ) to l.s. CoII (sq⋅- ), but at higher temperatures, the complex undergoes spin crossover from l.s. CoII (sq⋅- ) to h.s. CoII (sq⋅- ), representing the first example of two-step magnetic switching in a mononuclear monodioxolene cobalt complex. We hypothesize that ligand dynamicity may facilitate access to the rarely observed l.s. CoII (sq⋅- ) intermediate state, suggesting a new design criterion in the development of stimulus-responsive multi-state molecular switches.
Collapse
Affiliation(s)
- Khadanand Kc
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Toby Woods
- George L. Clark X-Ray Facility and 3 M Materials Laboratory, University of Illinois, Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lisa Olshansky
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
6
|
Charette BJ, King SR, Chen J, Holm AR, Malme JT, Cook RD, Schaller RD, Jackson NE, Olshansky L. Excited State Dynamics of a Conformationally Fluxional Copper Coordination Complex. J Phys Chem A 2023; 127:7747-7755. [PMID: 37672011 DOI: 10.1021/acs.jpca.3c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The conversion of solar energy into chemical fuel represents a capstone goal of the 21st century and has the potential to supply terawatts of power in a globally distributed manner. However, the disparate time scales of photodriven charge separation (∼fs) and steps in chemical reactions (∼μs) represent an inherent bottleneck in solar-to-fuels technology. To address this discrepancy, we are developing earth-abundant coordination complexes that undergo light-induced conformational rearrangements such that charge separation (CS) is hastened, while charge recombination (CR) is slowed. To these ends, we report the preparation and characterization of a new series of conformationally fluxional copper coordination complexes that contain a twisted intramolecular charge transfer (TICT) fluorophore as part of their ligand scaffold. Structural and spectroscopic characterization of the Cu(I) and Cu(II) complexes formed with these ligands in their ground states establish oxidation state-dependent conformational dynamicity, while time-resolved emission and transient absorption spectroscopies define the photophysical parameters of photo-induced excited states. Building on initial reports with a related set of molecules, the improved ligand design presented here greatly simplifies the observed photophysics, effectively shutting down unwanted ligand-centered excited states previously observed. Time-dependent density functional theory (TDDFT) analyses reveal an unusual metal-to-TICT electronic transition only reported once before, and though the formation of a CS state is not observed directly through experiments, TDDFT geometry optimizations in the excited states support the formation of transient Cu(II) CS species, lending credence to the potential success of our approach. These studies establish a clear model for the excited state dynamics at play in proof-of-concept systems and clarify key design parameters for future optimizations toward achieving long-lived CS via photoinduced conformational gating.
Collapse
Affiliation(s)
- Bronte J Charette
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Shelby R King
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jiaqi Chen
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Annika R Holm
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin T Malme
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Robert D Cook
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nicholas E Jackson
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Lisa Olshansky
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Griffin PJ, Olshansky L. Rapid Electron Transfer Self-Exchange in Conformationally Dynamic Copper Coordination Complexes. J Am Chem Soc 2023; 145:20158-20162. [PMID: 37683290 DOI: 10.1021/jacs.3c05935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
We report the electron transfer (ET) self-exchange rate constants (k11) for a pair of CuII/I complexes utilizing dpaR (dpa = dipicolylaniline, R = OMe, SMe) ligands assessed by NMR line broadening experiments. These ligands afford copper complexes that are conformationally dynamic in one oxidation state. With R = OMe, the CuI complex is dynamic, while with R = SMe, the CuII complex is dynamic. Both complexes exhibit unexpectedly large k11 values of 2.48(6) × 105 and 2.21(9) × 106 M-1 s-1 for [CuCl(dpaOMe)]+/0 and [CuCl(dpaSMe)]+/0, respectively. Among the fastest reported molecular copper coordination complexes to date, that of [CuCl(dpaSMe)]+/0 exceeds all others by an order of magnitude and compares only with those observed in type 1 blue copper proteins. The dynamicity of these complexes establishes pre-steady-state conformational equilibria that minimize the inner-sphere reorganization energies to 0.71 and 0.62 eV for R = OMe and SMe, respectively. In contrast to the emphasis on rigidity in the formulation of entatic states applied to blue copper proteins, the success of these two systems highlights the relevance of conformational dynamicity in mediating rapid ET.
Collapse
Affiliation(s)
- Paul J Griffin
- Department of Chemistry, Center for Biophysics and Quantitative Biology, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Lisa Olshansky
- Department of Chemistry, Center for Biophysics and Quantitative Biology, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
9
|
Huang KY, Xiu LF, Fang XY, Yang MR, Noreldeen HAA, Chen W, Deng HH. Highly Efficient Luminescence from Charge-Transfer Gold Nanoclusters Enabled by Lewis Acid. J Phys Chem Lett 2022; 13:9526-9533. [PMID: 36200978 DOI: 10.1021/acs.jpclett.2c02724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the complicated intramolecular charge transfer (ICT) behaviors of nanomaterials is crucial to the development of high-quality nanoluminophores for various applications. However, the ICT process in molecule-like metal nanoclusters has been rarely explored. Herein, a proton binding-induced enhanced ICT state is discovered in 6-aza-2-thiothymine-protected gold nanoclusters (ATT-AuNCs). Such an excited-state electron transfer process gives rise to the weakened and red-shifted photoluminescence of these nanoclusters. By the joint use of this newfound ICT mechanism and a restriction of intramolecular motion (RIM) strategy, a red shift in the emission maxima of 30 nm with 27.5-fold higher fluorescence quantum efficiency is achieved after introducing rare-earth scandium ion (Sc3+) into ATT-AuNCs. Furthermore, it is found that upon the addition of Sc3+, the photoinduced electron transfer (PET) rate from ATT-AuNCs to minocycline is largely accelerated by forming a donor-bridge-acceptor structure. This paper offers a simple method to modulate the luminescent properties of metal nanoclusters for the rational design of next-generation sensing platforms.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou350004, China
| | - Ling-Fang Xiu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou350004, China
| | - Xiang-Yu Fang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou350004, China
| | - Ming-Rui Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou350004, China
| | - Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou350004, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou350004, China
| |
Collapse
|