1
|
Hu H, Duan X, Li M, Song W, Shi H, Wang G, Zheng N. Selective transformation of propargylic ester towards tunable polymerization pathways. Nat Commun 2025; 16:2160. [PMID: 40038290 DOI: 10.1038/s41467-025-57619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
Divergent synthesis of numerous complex molecules has emerged as a promising strategy as it allows the access to structurally distinct products from identical starting materials. However, selective transformation of the same monomer into diverse polymers by modulating the polymerization conditions remains a synthetic challenge. In this work, we report the design of propargylic ester, which can be selectively transformed into polyimidate, polyimine, or polyamidine through distinct polymerization pathways. By modulating polymerization conditions, either ester migrating or ester leaving can be selectively manipulated with the formation of different nitrogen-containing intermediates including imine, ketenimine, and alkylidene ketenimine. Three types of polymers could be exclusively obtained using one set of monomer combination containing propargylic ester and sulfonyl azide. In this work, the tunable ester leaving or migrating ability for propargylic ester allows it as a variable synthon monomer, which can facilitate varied transformations towards structure-diverse polymers.
Collapse
Affiliation(s)
- Haiyan Hu
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xuelun Duan
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Ming Li
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Wangze Song
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Haotian Shi
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Guofeng Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Nan Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
| |
Collapse
|
2
|
Wang ZL, Zhu R. Regioselective Condensation Polymerization of Propargylic Electrophiles Enabled by Catalytic Element-Cupration. J Am Chem Soc 2024; 146:19377-19385. [PMID: 38951483 DOI: 10.1021/jacs.4c05524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Here, we report a set of new polymerization reactions enabled by the 1,2-regioselective hydro- and silylcupration of enyne-type propargylic electrophiles. Highly regioregular head-to-tail poly(2-butyne-1,4-diyl)s (HT-PBD), bearing either methyl or silylmethyl side chains, are synthesized for the first time. A rapid entry into carbon-rich copolymers with adjustable silicon content is developed via in situ monomer bifurcation. Furthermore, a one-pot polymerization/semireduction sequence is developed to access a cis-poly(butadiene)-derived backbone by a ligand swap on copper hydride species. Interestingly, borocupration, typically exhibiting identical regioselectivity with its hydro- and silyl analogues, seems to proceed in a 3,4-selective manner. Computational studies suggest the possible role of the propargylic leaving group in this selectivity switch. This work presents a new class of regioregular sp-carbon-rich polymers and meanwhile a novel approach to organosilicon materials.
Collapse
Affiliation(s)
- Zheng-Lin Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Wang ZY, Zhu R. Conjugated [5]Cumulene Polymers Enabled by Condensation Polymerization of Propargylic Electrophiles. J Am Chem Soc 2023; 145:23755-23763. [PMID: 37853723 DOI: 10.1021/jacs.3c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Cumulenes, sp-hybridized carbon motifs featuring consecutive double bonds, have rarely been explored as π-elements for conjugated polymers. Long cumulenic conjugated polymers can serve as models for approaching carbyne, an intriguing yet elusive carbon allotrope. However, their synthesis is notoriously difficult due to intrinsic instability. To date, only few [3]cumulene-based polymers have been synthesized, mostly relying on surface chemistry. Higher cumulene-based polymers remain unknown. Here, we present a "meet in the middle" strategy to overcome this challenge and synthesize high-molecular-weight, stable, and solution-processable conjugated [5]cumulene polymers (Mw up to 67.9 kg/mol). Our approach involves a new polymerization method called step-growth condensation polymerization of propargylic electrophiles (step-growth CPPE). The structures and molecular weights of the cumulenic polymers are established by various spectroscopic methods, including a comparative analysis of a discrete oligomer series. By introducing ortho-substituents on the aryl side groups, we successfully address the stability-conjugation dilemma. Electronic communication between cumulene units is found to be contingent upon the aromaticity of the π-spacers, enabling flexible energy-level adjustment and new narrow band gap polymers. The synthetic methodology and structure-property relationship established in this work serve as the starting points for the exploration of this fascinating family of sp-carbon-rich materials.
Collapse
Affiliation(s)
- Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Wu B, Ding QJ, Wang ZL, Zhu R. Alkyne Polymers from Stable Butatriene Homologues: Controlled Radical Polymerization of Vinylidenecyclopropanes. J Am Chem Soc 2023; 145:2045-2051. [PMID: 36688814 DOI: 10.1021/jacs.2c12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Controlled polymerization of cumulenic monomers represents a promising yet underdeveloped strategy toward well-defined alkyne polymers. Here we report a stereoelectronic effect-inspired approach using simple vinylidenecyclopropanes (VDCPs) as butatriene homologues in controlled radical ring-opening polymerizations. While being thermally stable, VDCPs mimic butatrienes via conjugation of the cyclopropane ring. This leads to exclusive terminal-selective propagation that affords a highly structurally regular alkyne-based backbone, featuring complete ring-opening and no backbiting regardless of polymerization conditions.
Collapse
Affiliation(s)
- Bin Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian-Jun Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zheng-Lin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Duan X, Zheng N, Liu G, Li M, Wu Q, Sun X, Song W. Copper-Catalyzed One-Step Formation of Four C-N Bonds toward Polyfunctionalized Triazoles via Multicomponent Reaction. Org Lett 2022; 24:6006-6012. [PMID: 35930056 DOI: 10.1021/acs.orglett.2c02273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel four-component reaction of alkynes, amines, azides, and 2H-azirines has been developed for the first time by the efficient formation of four C-N bonds in one step under mild conditions, rapidly preparing polyfunctionalized triazoles with molecular diversity involving three different intermediates of copper-acetylide, copper-allenylidene, and copper-vinyl nitrene. Propargylic ester is disclosed as a "three-in-one" building block possessing triplicate cycloaddition and nucleophilic and electrophilic properties, which could enable such a four-component transformation by high yields, broad substrate scope, and functionalization.
Collapse
Affiliation(s)
- Xuelun Duan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Nan Zheng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gongbo Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ming Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qiming Wu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinhao Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wangze Song
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|