1
|
Zhang GD, Yang ZW, Yin FZ, Yan ZY, Xiong ZJ, Ma S, Guo ZK, Jiao RH. LC-MS Guided Discovery and Biosynthetic Pathway of Coprisamides E-H, Cinnamic Acid-Containing Metabolites from the Marine Algae-Derived Streptomyces thermolineatus NAK03196. JOURNAL OF NATURAL PRODUCTS 2025; 88:862-870. [PMID: 40030089 DOI: 10.1021/acs.jnatprod.4c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Four cinnamoyl-containing nonribosomal peptides (CCNPs), coprisamides E-H (1-4), were isolated from the marine algae-associated actinomycete strain Streptomyces thermolineatus NAK03196. Their structures were elucidated to be unreported coprisamides by comprehensive analyses of HRESIMS, 1D and 2D NMR spectroscopic data, Marfey's method, and MS/MS analysis. Coprisamides E (1) and F (2) bear a characteristic nonproteinogenic amino acid, 2,3-diaminopropanoic acid. The biosynthetic pathways for these isolates were proposed through a comparison of their biosynthetic gene clusters with reported homologous gene clusters. Coprisamide E (1) exhibited weak antibacterial activity against the Gram-positive strain Staphylococcus aureus.
Collapse
Affiliation(s)
- Guo Dong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zhi Wei Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Fang Zhou Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zhang Yuan Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zi Jun Xiong
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China
| | - Shuai Ma
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China
| | - Zhi Kai Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
2
|
Wu M, Torrence I, Liu Y, Wu J, Ge R, Ma K, Liu D, Ren J, Fan S, Ma M, Siegel JB, Tantillo DJ, Lin W, Fan A. Characterization and Engineering of a Bisabolene Synthase Reveal an Unusual Hydride Shift and Key Residues Critical for Mono-, Bi-, and Tricyclic Sesquiterpenes Formation. J Am Chem Soc 2025; 147:10413-10422. [PMID: 40071547 DOI: 10.1021/jacs.4c17818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Sesquiterpene synthases (STSs) catalyze carbocation cascade reactions with various hydrogen shifts and cyclization patterns that generate structurally diverse sesquiterpene skeletons. However, the molecular basis for hydrogen shifts and cyclizations, which determine STS product distributions, remains enigmatic. In this study, an elusive STS SydA was identified in the biosynthesis of sydonol, which synthesized a new bisabolene-type sesquiterpene 6 with a unique saturated terminal pendant isopentane. Extensive evidence from isotope labeling experiments, crystal structures of SydA and its variant, quantum chemical calculations, and mutagenesis experiments reveal a plausible mechanism for the formation of 6 involving an unusual 1,7-hydride shift, which may be a key branchpoint for monocyclic, bicyclic, and tricyclic products. Structure-based engineering resulted in SydA variants that promote different reaction pathways, leading to the production of bicyclic α-cuprenene and (+)-β-chamigrene and tricyclic 7-epi-β-cedrene and β-microbiotene. These findings not only reveal a new bisabolene and its biosynthesis but also provide insights into the molecular basis of the hydride shifts and cyclizations, which pave the way for engineering STSs to produce complex terpenoid products.
Collapse
Affiliation(s)
- Mengyue Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ian Torrence
- Department of Chemistry, University of California-Davis, Davis, California 95616, Untied States
| | - Yuanning Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingshuai Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rui Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Ningbo 315832 Zhejiang, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilong Fan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Justin B Siegel
- Department of Chemistry, University of California-Davis, Davis, California 95616, Untied States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, California 95616, United States
- Genome Center, University of California-Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California 95616, Untied States
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Ningbo 315832 Zhejiang, China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Nime MJ, Yamamura H, Hayakawa M, Matsuura N, Oku N, Igarashi Y. Cryptoic acids A and B, benzene-containing polyketides, and cyclocryptamide, a modified diketopiperazine, from an actinomycete of the genus Cryptosporangium. J Antibiot (Tokyo) 2025; 78:141-148. [PMID: 39762556 DOI: 10.1038/s41429-024-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/28/2025]
Abstract
Two new benzene-containing polyketides, cryptoic acids A (1) and B (2), along with a new acylated diketopiperazine designated cyclocryptamide (3), were isolated from the culture extract of Cryptosporangium sp. YDKA-T02. The absolute configuration of amino acid components in 3 was determined by Marfey's method. While 3 was not cytotoxic and inactive against microbial test strains, 1 and 2 showed PPARγ agonistic activity in a reporter gene assay and cytotoxicity against P388 murine leukemia cells.
Collapse
Affiliation(s)
- Md Julkar Nime
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Hideki Yamamura
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | | | - Nobuyasu Matsuura
- Department of Bioscience, Faculty of Bioscience, Okayama University of Science, Okayama, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan.
| |
Collapse
|
4
|
Xie F, Zhao H, Liu J, Yang X, Neuber M, Agrawal AA, Kaur A, Herrmann J, Kalinina OV, Wei X, Müller R, Fu C. Autologous DNA mobilization and multiplication expedite natural products discovery from bacteria. Science 2024; 386:eabq7333. [PMID: 39666857 DOI: 10.1126/science.abq7333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2024] [Indexed: 12/14/2024]
Abstract
The transmission of antibiotic-resistance genes, comprising mobilization and relocation events, orchestrates the dissemination of antimicrobial resistance. Inspired by this evolutionarily successful paradigm, we developed ACTIMOT, a CRISPR-Cas9-based approach to unlock the vast chemical diversity concealed within bacterial genomes. ACTIMOT enables the efficient mobilization and relocation of large DNA fragments from the chromosome to replicative plasmids within the same bacterial cell. ACTIMOT circumvents the limitations of traditional molecular cloning methods involving handling and replicating large pieces of genomic DNA. Using ACTIMOT, we mobilized and activated four cryptic biosynthetic gene clusters from Streptomyces, leading to the discovery of 39 compounds across four distinct classes. This work highlights the potential of ACTIMOT for accelerating the exploration of biosynthetic pathways and the discovery of natural products.
Collapse
Affiliation(s)
- Feng Xie
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Haowen Zhao
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Jiaqi Liu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Xiaoli Yang
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Neuber
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Amay Ajaykumar Agrawal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Amninder Kaur
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- PharmaScienceHub, Saarbrücken, Germany
- Faculty of Medicine, Saarland University, Homburg, Germany
| | - Xiaoyi Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| |
Collapse
|
5
|
Zou Y, Shi J, Sun JL, Li LY, Yan ZY, Guo ZK, Jiao RH. Maduraflavacins A-E, Unusual Phenyl Polyene Metabolites Produced by a Rare Marine-Derived Actinomadura sp. JOURNAL OF NATURAL PRODUCTS 2024; 87:2530-2536. [PMID: 39318040 DOI: 10.1021/acs.jnatprod.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Phenyl polyenes comprise a small family of bacterial natural products with broad and potent bioactivities, primarily found in actinobacteria. Here we report the discovery of five new phenyl polyene metabolites, maduraflavacins A-E (1-5), from a rare, marine-derived actinobacteria strain Actinomadura glauciflava NA03286. The structures of these natural products were determined by NMR spectroscopy, HRESIMS, LC-MS/MS, and chemical derivatization. All of these new maduraflavacins feature methyl substitutions at the polyene side chain, and maduraflavacins A-C (1-3) possessed a 1-N-β-d-glucosamine-(3 → 1)-O-β-d-glucopyranosyl-(3 → 1)-O-β-d-glucopyranosyl-(6 → 1)-O-β-d-glucopyranoside tetrasaccharide moiety via an amido linkage with a phenyl polyene skeleton. Compounds 1 and 2 showed weak antibacterial activities against the Gram-positive bacteria Staphylococcus aureus Sau 16339 and Micrococcus luteus, respectively.
Collapse
Affiliation(s)
- Yan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jia Lin Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ling Yu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhang Yuan Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhi Kai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Zhang B, Ge HM. Recent progresses in the cyclization and oxidation of polyketide biosynthesis. Curr Opin Chem Biol 2024; 81:102507. [PMID: 39098210 DOI: 10.1016/j.cbpa.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
Polyketides represent an important class of natural products, renowned for their intricate structures and diverse biological activities. In contrast to common fatty acids, polyketides possess relatively more rigid carbon skeletons, more complex ring systems, and chiral centers. These structural features are primarily achieved through distinctive enzymatic cyclizations and oxidations as tailoring steps. In this opinion, we discuss the recent progress in deciphering the mechanisms of cyclization and oxidation within polyketide biosynthesis. By shedding light on these enzymatic processes, this article seeks to motivate the community to unravel the remaining mysteries surrounding cyclase and oxidase functionalities and to explore novel polyketide natural products through genome mining.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023 China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023 China.
| |
Collapse
|
7
|
Deng Z, Liu C, Wang F, Song N, Liu J, Li H, Liu S, Li T, Liu Z, Xiao F, Li W. A Versatile Thioesterase Involved in Dimerization during Cinnamoyl Lipid Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202402010. [PMID: 38462490 DOI: 10.1002/anie.202402010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The cinnamoyl lipid compound youssoufene A1 (1), featuring a unique dearomatic carbon-bridged dimeric skeleton, exhibits increased inhibition against multidrug resistant Enterococcus faecalis as compared to monomeric youssoufenes. However, the formation process of this intriguing dearomatization/dimerization remains unknown. In this study, an unusual "gene-within-gene" thioesterase (TE) gene ysfF was functionally characterized. The gene was found to naturally encodes two proteins, an entire YsfF with α/β-hydrolase and 4-hydroxybenzoyl-CoA thioesterase (4-HBT)-like enzyme domains, and a nested YsfFHBT (4-HBT-like enzyme). Using an intracellular tagged carrier-protein tracking (ITCT) strategy, in vitro reconstitution and in vivo experiments, we found that: i) both domains of YsfF displayed thioesterase activities; ii) YsfF/YsfFHBT could accomplish the 6π-electrocyclic ring closure for benzene ring formation; and iii) YsfF and cyclase YsfX together were responsible for the ACP-tethered dearomatization/dimerization process, possibly through an unprecedented Michael-type addition reaction. Moreover, site-directed mutagenesis experiments demonstrated that N301, E483 and H566 of YsfF are critical residues for both the 6π-electrocyclization and dimerization processes. This study enhances our understanding of the multifunctionality of the TE protein family.
Collapse
Affiliation(s)
- Zirong Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi, 712100, China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Chunni Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Fang Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Ni Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jing Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Siyu Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Tong Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Zengzhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Fei Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Wenli Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi, 712100, China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| |
Collapse
|
8
|
Song Y, Amaya JA, Murarka VC, Mendez H, Hogan M, Muldoon J, Evans P, Ortin Y, Kelly SL, Lamb DC, Poulos TL, Caffrey P. Biosynthesis of a new skyllamycin in Streptomyces nodosus: a cytochrome P450 forms an epoxide in the cinnamoyl chain. Org Biomol Chem 2024; 22:2835-2843. [PMID: 38511621 DOI: 10.1039/d4ob00178h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Activation of a silent gene cluster in Streptomyces nodosus leads to synthesis of a cinnamoyl-containing non-ribosomal peptide (CCNP) that is related to skyllamycins. This novel CCNP was isolated and its structure was interrogated using mass spectrometry and nuclear magnetic resonance spectroscopy. The isolated compound is an oxidised skyllamycin A in which an additional oxygen atom is incorporated in the cinnamoyl side-chain in the form of an epoxide. The gene for the epoxide-forming cytochrome P450 was identified by targeted disruption. The enzyme was overproduced in Escherichia coli and a 1.43 Å high-resolution crystal structure was determined. This is the first crystal structure for a P450 that forms an epoxide in a substituted cinnamoyl chain of a lipopeptide. These results confirm the proposed functions of P450s encoded by biosynthetic gene clusters for other epoxidized CCNPs and will assist investigation of how epoxide stereochemistry is determined in these natural products.
Collapse
Affiliation(s)
- Yuhao Song
- Centre for Synthesis and Chemical Biology and School of Biomolecular and Biomedical Science, University College Dublin, Ireland.
| | - Jose A Amaya
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences and Chemistry, University of California, Irvine, California, USA
| | - Vidhi C Murarka
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences and Chemistry, University of California, Irvine, California, USA
| | - Hugo Mendez
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences and Chemistry, University of California, Irvine, California, USA
| | - Mark Hogan
- Centre for Synthesis and Chemical Biology and School of Biomolecular and Biomedical Science, University College Dublin, Ireland.
| | - Jimmy Muldoon
- Centre for Synthesis and Chemical Biology and School of Chemistry, University College Dublin, Ireland
| | - Paul Evans
- Centre for Synthesis and Chemical Biology and School of Chemistry, University College Dublin, Ireland
| | - Yannick Ortin
- Centre for Synthesis and Chemical Biology and School of Chemistry, University College Dublin, Ireland
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Science, Institute of Life Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - David C Lamb
- Faculty of Medicine, Health and Life Science, Institute of Life Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Thomas L Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences and Chemistry, University of California, Irvine, California, USA
| | - Patrick Caffrey
- Centre for Synthesis and Chemical Biology and School of Biomolecular and Biomedical Science, University College Dublin, Ireland.
| |
Collapse
|
9
|
Wu Y, Cui Y, Song W, Wei W, He Z, Tao J, Yin D, Chen X, Gao C, Liu J, Liu L, Wu J. Reprogramming the Transition States to Enhance C-N Cleavage Efficiency of Rhodococcus opacusl-Amino Acid Oxidase. JACS AU 2024; 4:557-569. [PMID: 38425913 PMCID: PMC10900486 DOI: 10.1021/jacsau.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024]
Abstract
l-Amino acid oxidase (LAAO) is an important biocatalyst used for synthesizing α-keto acids. LAAO from Rhodococcus opacus (RoLAAO) has a broad substrate spectrum; however, its low total turnover number limits its industrial use. To overcome this, we aimed to employ crystal structure-guided density functional theory calculations and molecular dynamic simulations to investigate the catalytic mechanism. Two key steps were identified: S → [TS1] in step 1 and Int1 → [TS2] in step 2. We reprogrammed the transition states [TS1] and [TS2] to reduce the identified energy barrier and obtain a RoLAAO variant capable of catalyzing 19 kinds of l-amino acids to the corresponding high-value α-keto acids with a high total turnover number, yield (≥95.1 g/L), conversion rate (≥95%), and space-time yields ≥142.7 g/L/d in 12-24 h, in a 5 L reactor. Our results indicated the promising potential of the developed RoLAAO variant for use in the industrial production of α-keto acids while providing a potential catalytic-mechanism-guided protein design strategy to achieve the desired physical and catalytic properties of enzymes.
Collapse
Affiliation(s)
- Yaoyun Wu
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School
of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yaozhong Cui
- Jiangsu
Xishan Senior High School, Wuxi 214174, China
| | - Wei Song
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhizhen He
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinyang Tao
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Dejing Yin
- School
of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Xu Y, Zhang Y, Zhang Q, Li JC, Zhou ZH, Yang Z, Xiu J, Chen X, Huang J, Ge HM, Shi J. Genome Mining of Cinnamoyl-Containing Nonribosomal Peptide Gene Clusters Directs the Production of Malacinnamycin. Org Lett 2024; 26:971-976. [PMID: 38265233 DOI: 10.1021/acs.orglett.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Cinnamoyl-containing nonribosomal peptides (CCNPs) constitute a unique family of actinobacterial secondary metabolites that display a broad spectrum of biological activities. Here, we present a genome mining approach targeting cyclase and is isomerase to discover new CCNPs, which led to the identification of 207 putative CCNP gene clusters from public bacterial genome databases. After strain prioritization, a novel class of CCNP-type glycopeptides named malacinnamycin was identified. A plausible biosynthetic pathway for malacinnamycin was deduced by bioinformatics analysis.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Yi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qun Zhang
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Jian Cheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhao Hui Zhou
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Zhengming Yang
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Jianlong Xiu
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Xinglong Chen
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Jia Huang
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
11
|
Kong J, Huang C, Xiong Y, Li B, Kong W, Liu W, Tan Z, Peng D, Duan Y, Zhu X. Discovery and Biosynthetic Studies of a Highly Reduced Cinnamoyl Lipid, Tripmycin A, from an Endophytic Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:1870-1877. [PMID: 37462318 DOI: 10.1021/acs.jnatprod.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A Tripterygium wilfordii endophyte, Streptomyces sp. CB04723, was shown to produce an unusually highly reduced cytotoxic cinnamoyl lipid, tripmycin A (1). Structure-activity relationship studies revealed that both the cinnamyl moiety and the saturated fatty acid side chain are indispensable to the over 400-fold cytotoxicity improvement of 1 against the triple-negative breast cancer cell line MDA-MB-231 compared to 5-(2-methylphenyl)-4-pentenoic acid (2). Bioinformatical analysis, gene inactivation, and overexpression revealed that Hxs15 most likely acted as an enoyl reductase and was involved with the side chain reduction of 1, which provides a new insight into the biosynthesis of cinnamoyl lipids.
Collapse
Affiliation(s)
- Jieqian Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Chengshuang Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Baihuan Li
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wenping Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wangyang Liu
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Zhouke Tan
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Dian Peng
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, People's Republic of China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
12
|
Niwa K, Ohashi M, Xie K, Chiang CY, Jamieson CS, Sato M, Watanabe K, Liu F, Houk K, Tang Y. Biosynthesis of Polycyclic Natural Products from Conjugated Polyenes via Tandem Isomerization and Pericyclic Reactions. J Am Chem Soc 2023; 145:13520-13525. [PMID: 37310230 PMCID: PMC10871872 DOI: 10.1021/jacs.3c02380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report biosynthetic pathways that can synthesize and transform conjugated octaenes and nonaenes to complex natural products. The biosynthesis of (-)-PF1018 involves an enzyme PfB that can control the regio-, stereo-, and periselectivity of multiple reactions starting from a conjugated octaene. Using PfB as a lead, we discovered a homologous enzyme, BruB, that facilitates diene isomerization, tandem 8π-6π-electrocyclization, and a 1,2-divinylcyclobutane Cope rearrangement to generate a new-to-nature compound.
Collapse
Affiliation(s)
- Kanji Niwa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Kaili Xie
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chen-Yu Chiang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Cooper S. Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Fang Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - K.N. Houk
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
14
|
Polyene Carboxylic Acids from a Streptomyces sp. Isolated from Tibet Soil. Molecules 2023; 28:molecules28062579. [PMID: 36985551 PMCID: PMC10054270 DOI: 10.3390/molecules28062579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Six new polyene carboxylic acids named serpentemycins E–J (1–6), together with three known analogs (7–9), were isolated from the fermentation medium of Streptomyces sp. TB060207, which was isolated from arid soil collected from Tibet, China. The structures of the new compounds were elucidated mainly on the basis of HR-ESI-MS and NMR spectroscopic analyses. The inhibitory activities of compounds 1–9 against NO production in LPS-activated RAW264.7 cells were evaluated. Compound 9 has an inhibition rate of 87.09% to 60.53% at concentrations ranging from 5.0 to 40.0 µM.
Collapse
|
15
|
Yang YM, Zhao EJ, Wei W, Xu ZF, Shi J, Wu X, Zhang B, Igarashi Y, Jiao RH, Liang Y, Tan RX, Ge HM. Cytochrome P450 Catalyzes Benzene Ring Formation in the Biosynthesis of Trialkyl-Substituted Aromatic Polyketides. Angew Chem Int Ed Engl 2023; 62:e202214026. [PMID: 36458944 DOI: 10.1002/anie.202214026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Lorneic acid and related natural products are characterized by a trialkyl-substituted benzene ring. The formation of the aromatic core in the middle of the polyketide chain is unusual. We characterized a cytochrome P450 enzyme that can catalyze the hallmark benzene ring formation from an acyclic polyene substrate through genetic and biochemical analysis. Using this P450 as a beacon for genome mining, we obtained 12 homologous type I polyketide synthase (PKS) gene clusters, among which two gene clusters are activated and able to produce trialkyl-substituted aromatic polyketides. Quantum chemical calculations were performed to elucidate the plausible mechanism for P450-catalyzed benzene ring formation. Our work expands our knowledge of the catalytic diversity of cytochrome P450.
Collapse
Affiliation(s)
- Yu Meng Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Er Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wanqing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zi Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xuan Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, 939-0398, Japan
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Zhou C, Cao X, Ge Y, Wu X, Zhang Z, Ma Y, Dickschat JS, Wu B. Talaropeptins A and B, Tripeptides with an N- trans-Cinnamoyl Moiety from the Marine-Derived Fungus Talaromyces purpureogenus CX11. JOURNAL OF NATURAL PRODUCTS 2022; 85:2620-2625. [PMID: 36318598 DOI: 10.1021/acs.jnatprod.2c00638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report the discovery of talaropeptins A (1) and B (2), tripeptides with an unusual 5/6/5 heterocyclic scaffold and an N-trans-cinnamoyl moiety, which were identified from the marine-derived fungus Talaromyces purpureogenus CX11. A bioinformatic analysis of the genome of T. purpureogenus CX11 and gene inactivation revealed that the biosynthesis of talaropeptins involves a nonribosomal peptide synthase gene cluster. Their chemical structures were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configurations of 1 and 2 were established by electronic circular dichroism calculations and Marfey's method. The plausible biosynthesis of 1 and 2 is also proposed on the basis of gene deletion, substrate feeding, and heterologous expression. Compounds 1 and 2 showed moderate antifungal activity against phytopathogenic fungus Fusarium oxysporum with MIC values of 12.5 and 25 μg/mL, respectively.
Collapse
Affiliation(s)
- Chengzeng Zhou
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Xun Cao
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Yichao Ge
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Xiaodan Wu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China
| | - Zunjing Zhang
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Yihan Ma
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Jeroen S Dickschat
- Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Bin Wu
- Ocean College, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Lin Z, Qu X. Emerging diversity in polyketide synthase. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Kang S, Han J, Jang SC, An JS, Kang I, Kwon Y, Nam SJ, Shim SH, Cho JC, Lee SK, Oh DC. Epoxinnamide: An Epoxy Cinnamoyl-Containing Nonribosomal Peptide from an Intertidal Mudflat-Derived Streptomyces sp. Mar Drugs 2022; 20:md20070455. [PMID: 35877748 PMCID: PMC9321520 DOI: 10.3390/md20070455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cinnamoyl-containing nonribosomal peptides (CCNPs) form a unique family of actinobacterial secondary metabolites and display various biological activities. A new CCNP named epoxinnamide (1) was discovered from intertidal mudflat-derived Streptomyces sp. OID44. The structure of 1 was determined by the analysis of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) data along with a mass spectrum. The absolute configuration of 1 was assigned by the combination of advanced Marfey’s method, 3JHH and rotating-frame overhauser effect spectroscopy (ROESY) analysis, DP4 calculation, and genomic analysis. The putative biosynthetic pathway of epoxinnamide (1) was identified through the whole-genome sequencing of Streptomyces sp. OID44. In particular, the thioesterase domain in the nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster was proposed as a bifunctional enzyme, which catalyzes both epimerization and macrocyclization. Epoxinnamide (1) induced quinone reductase (QR) activity in murine Hepa-1c1c7 cells by 1.6-fold at 5 μM. It also exhibited effective antiangiogenesis activity in human umbilical vein endothelial cells (IC50 = 13.4 μM).
Collapse
Affiliation(s)
- Sangwook Kang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Jaeho Han
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Sung Chul Jang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (I.K.); (J.-C.C.)
| | - Yun Kwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea;
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (I.K.); (J.-C.C.)
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
- Correspondence: ; Tel.: +82-880-2491; Fax: +82-762-8322
| |
Collapse
|