1
|
Díaz Mirón G, Lien-Medrano CR, Banerjee D, Monti M, Aradi B, Sentef MA, Niehaus TA, Hassanali A. Non-adiabatic Couplings in Surface Hopping with Tight Binding Density Functional Theory: The Case of Molecular Motors. J Chem Theory Comput 2024; 20:10602-10614. [PMID: 39564804 DOI: 10.1021/acs.jctc.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Nonadiabatic molecular dynamics (NAMD) has become an essential computational technique for studying the photophysical relaxation of molecular systems after light absorption. These phenomena require approximations that go beyond the Born-Oppenheimer approximation, and the accuracy of the results heavily depends on the electronic structure theory employed. Sophisticated electronic methods, however, make these techniques computationally expensive, even for medium size systems. Consequently, simulations are often performed on simplified models to interpret the experimental results. In this context, a variety of techniques have been developed to perform NAMD using approximate methods, particularly density functional tight binding (DFTB). Despite the use of these techniques on large systems, where ab initio methods are computationally prohibitive, a comprehensive validation has been lacking. In this work, we present a new implementation of trajectory surface hopping combined with DFTB, utilizing nonadiabatic coupling vectors. We selected the methaniminium cation and furan systems for validation, providing an exhaustive comparison with the higher-level electronic structure methods. As a case study, we simulated a system from the class of molecular motors, which has been extensively studied experimentally but remains challenging to simulate with ab initio methods due to its inherent complexity. Our approach effectively captures the key photophysical mechanism of dihedral rotation after the absorption of light. Additionally, we successfully reproduced the transition from the bright to dark states observed in the time-dependent fluorescence experiments, providing valuable insights into this critical part of the photophysical behavior in molecular motors.
Collapse
Affiliation(s)
- Gonzalo Díaz Mirón
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Carlos R Lien-Medrano
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Debarshi Banerjee
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Marta Monti
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Bálint Aradi
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Michael A Sentef
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
- Center for Free-Electron Laser Science (CFEL), Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Thomas A Niehaus
- CNRS, Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Ali Hassanali
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| |
Collapse
|
2
|
Elayan IA, Brown A. Non-Degenerate Two-Photon Absorption of Fluorescent Protein Chromophores. J Phys Chem A 2024; 128:7511-7523. [PMID: 39192559 DOI: 10.1021/acs.jpca.3c08402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Two-photon absorption (2PA), where a pair of photons are absorbed simultaneously, is recognized as a potent bioimaging technique, which depends on the quantified 2PA probability, defined as cross-section (σ2PA). The absorbed photons either have equivalent (ω1 = ω2) or different frequencies (ω1 ≠ ω2), where the former is degenerate 2PA (D-2PA) and the latter is nondegenerate 2PA (ND-2PA). ND-2PA is of particular interest since it is a promising imaging technology with flexibility of photon frequencies and enhanced cross sections, however, it remains a relatively unexplored area compared to D-2PA. This work utilizes time-dependent density functional theory (TD-DFT) and second-order approximate coupled-cluster with the resolution-of-identity approximation (RI-CC2), for the excitation from S0 to S1, to investigate σD-2PA and σND-2PA of FP chromophore models. Interestingly, comparing CAM-B3LYP with the RI-CC2 computations shows qualitative and, in fact, near quantitative agreement in the computed improvements of σND-2PA for comparable (relative) frequency detunings, despite the known underestimations of 2PA cross sections, for TD-DFT results relative to RI-CC2 values. As expected from the 2-state model, the computed values of σND-2PA are quantitatively larger than σD-2PA, where chromophores with the largest values of σD-2PA show greater potential for σND-2PA improvement. Anionic chromophores demonstrated improvements up to 14%, while substantial enhancements were observed in neutral chromophores with some achieving a 30% increase. This work investigates the ND-2PA photophysical characteristics of FP chromophores and identifies qualitative patterns in the computed properties of ND-2PA relative to D-2PA.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
3
|
Yan K, Hu Z, Yu P, He Z, Chen Y, Chen J, Sun H, Wang S, Zhang F. Ultra-photostable small-molecule dyes facilitate near-infrared biophotonics. Nat Commun 2024; 15:2593. [PMID: 38519530 PMCID: PMC10960032 DOI: 10.1038/s41467-024-46853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Long-wavelength, near-infrared small-molecule dyes are attractive in biophotonics. Conventionally, they rely on expanded aromatic structures for redshift, which comes at the cost of application performance such as photostability, cell permeability, and functionality. Here, we report a ground-state antiaromatic strategy and showcase the concise synthesis of 14 cationic aminofluorene dyes with mini structures (molecular weights: 299-504 Da) and distinct spectra covering 700-1600 nm. Aminofluorene dyes are cell-permeable and achieve rapid renal clearance via a simple 44 Da carboxylation. This accelerates optical diagnostics of renal injury by 50 min compared to existing macromolecular approaches. We develop a compact molecular sensing platform for in vivo intracellular sensing, and demonstrate the versatile applications of these dyes in multispectral fluorescence and optoacoustic imaging. We find that aromaticity reversal upon electronic excitation, as indicated by magnetic descriptors, not only reduces the energy bandgap but also induces strong vibronic coupling, resulting in ultrafast excited-state dynamics and unparalleled photostability. These results support the argument for ground-state antiaromaticity as a useful design rule of dye development, enabling performances essential for modern biophotonics.
Collapse
Affiliation(s)
- Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, PR China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Jiajian Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, PR China.
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China.
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China.
| |
Collapse
|
4
|
Ong WSY, Ji K, Pathiranage V, Maydew C, Baek K, Villones RLE, Meloni G, Walker AR, Dodani SC. Rational Design of the β-Bulge Gate in a Green Fluorescent Protein Accelerates the Kinetics of Sulfate Sensing. Angew Chem Int Ed Engl 2023; 62:e202302304. [PMID: 37059690 PMCID: PMC10330437 DOI: 10.1002/anie.202302304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Detection of anions in complex aqueous media is a fundamental challenge with practical utility that can be addressed by supramolecular chemistry. Biomolecular hosts such as proteins can be used and adapted as an alternative to synthetic hosts. Here, we report how the mutagenesis of the β-bulge residues (D137 and W138) in mNeonGreen, a bright, monomeric fluorescent protein, unlocks and tunes the anion preference at physiological pH for sulfate, resulting in the turn-off sensor SulfOFF-1. This unprecedented sensing arises from an enhancement in the kinetics of binding, largely driven by position 138. In line with these data, molecular dynamics (MD) simulations capture how the coordinated entry and gating of sulfate into the β-barrel is eliminated upon mutagenesis to facilitate binding and fluorescence quenching.
Collapse
Affiliation(s)
- Whitney S. Y. Ong
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Ke Ji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Vishaka Pathiranage
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Caden Maydew
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Kiheon Baek
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Rhiza Lyne E. Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Alice R. Walker
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Sheel C. Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| |
Collapse
|
5
|
Mukherjee S, Manna P, Douglas N, Chapagain PP, Jimenez R. Conformational Dynamics of mCherry Variants: A Link between Side-Chain Motions and Fluorescence Brightness. J Phys Chem B 2023; 127:52-61. [PMID: 36574626 DOI: 10.1021/acs.jpcb.2c05584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 3-fold higher brightness of the recently developed mCherry-XL red fluorescent protein (FP) compared to its progenitor, mCherry, is due to a significant decrease in the nonradiative decay rate underlying its increased fluorescence quantum yield. To examine the structural and dynamic role of the four mutations that distinguish the two FPs and closely related variants, we employed microsecond time scale, all-atom molecular dynamics simulations. The simulations revealed that the I197R mutation leads to the formation of multiple hydrogen-bonded contacts and increased rigidity of the β-barrel. In particular, mCherryXL showed reduced nanosecond time scale breathing of the gap between the β7 and β10-strands, which was previously shown to be the most flexible region of mCherry. Together with experimental results, the simulations also reveal steric interactions of residue 161 and a network of hydrogen-bonding interactions of the chromophore with residues at positions 59, 143, and 163 that are critical in perturbing the chromophore electronic structure. Finally, we shed light on the conformational dynamics of the conserved residues R95 and S146, which are hydrogen-bonded to the chromophore, and provide physical insights into the observed photophysics. To the best of our knowledge, this is the first study that evaluates the conformational space for a set of closely related FPs generated by directed evolution.
Collapse
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Premashis Manna
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nancy Douglas
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Prem P Chapagain
- Department of Physics, Florida International University, 11200 SW Eighth Street, CP204, Miami, Florida 33199, United States
| | - Ralph Jimenez
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Rao AG, Schapiro I. Photoisomerization of phytochrome chromophore models: an XMS-CASPT2 study. Phys Chem Chem Phys 2022; 24:29393-29405. [PMID: 36468544 DOI: 10.1039/d2cp04249e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phytochromes are a superfamily of photoreceptors that harbor linear tetrapyrroles as chromophores. Upon light illumination, the linear tetrapyrrole chromophore undergoes a double bond isomerization which starts a photocycle. In this work, we studied the photoisomerization of chromophore models designed based on the C- and D-rings of the phycocyanobilin (PCB) chromophore. In total, five different models with varying substitutions were investigated. Firstly, the vertical excitation energies were benchmarked using different computational methods to establish the relative order of the excited states. Based on these calculations, we computed the photoisomerization profiles using the extended multi-state (XMS) version of the CASPT2 method. The profiles were obtained for both the clockwise and counterclockwise rotations of the C15C16 bond in the Z and E isomers using a linear interpolation of internal coordinates between the Franck-Condon and MECI geometries. In the minimal chromophore model that lacks the substitutions at the pyrrole rings, the isomerization involves both C14-C15 and C15C16 bonds of the methine bridge between the C- and D-rings, resembling the hula-twist motion. The MECIs are characterized by a partial charge transfer between the two pyrrole rings pointing towards a twisted intramolecular charge transfer. Systematic introduction of substituents leads to an increase in the steric repulsion between the two pyrrole rings causing a pretwist of the dihedral around the C15C16 bond, which creates a preference for the counterclockwise isomerization. An introduction of the carbonyl group at the D-ring increases the extent of charge transfer which changes the isomerization mechanism from hula-twist to one-bond flip.
Collapse
Affiliation(s)
- Aditya G Rao
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
7
|
Sinha S, Tam B, Wang SM. Applications of Molecular Dynamics Simulation in Protein Study. MEMBRANES 2022; 12:844. [PMID: 36135863 PMCID: PMC9505860 DOI: 10.3390/membranes12090844] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 05/29/2023]
Abstract
Molecular Dynamics (MD) Simulations is increasingly used as a powerful tool to study protein structure-related questions. Starting from the early simulation study on the photoisomerization in rhodopsin in 1976, MD Simulations has been used to study protein function, protein stability, protein-protein interaction, enzymatic reactions and drug-protein interactions, and membrane proteins. In this review, we provide a brief review for the history of MD Simulations application and the current status of MD Simulations applications in protein studies.
Collapse
Affiliation(s)
| | | | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|