1
|
Rashmi R, Balogun TO, Azom G, Agnew H, Kumar R, Paesani F. Revealing the Water Structure at Neutral and Charged Graphene/Water Interfaces through Quantum Simulations of Sum Frequency Generation Spectra. ACS NANO 2025; 19:4876-4886. [PMID: 39835751 DOI: 10.1021/acsnano.4c16486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies. As the graphene surface becomes positively charged, interfacial water molecules reorient, decreasing the intensity of the dangling OH peak as the OH groups turn away from the graphene. In contrast, water molecules orient their OH bonds toward negatively charged graphene, leading to a prominent dangling OH peak in the corresponding vSFG spectrum. This charge-induced reorganization generates a diverse range of hydrogen-bonding topologies at the interface driven by variations in the underlying electrostatic interactions. Importantly, these structural changes extend into deeper water layers, creating an unequal distribution of molecules with OH bonds pointing toward and away from the graphene sheet. This imbalance amplifies bulk spectral features, underscoring the complexity of many-body interactions that shape the molecular structure of water at charged graphene interfaces.
Collapse
Affiliation(s)
- Richa Rashmi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Toheeb O Balogun
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Golam Azom
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Revati Kumar
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Delgà-Fernández M, Toral-Lopez A, Guimerà-Brunet A, Pérez-Marín AP, Marin EG, Godoy A, Garrido JA, Del Corro E. Interfacial Phenomena Governing Performance of Graphene Electrodes in Aqueous Electrolyte. NANO LETTERS 2024; 24:11376-11384. [PMID: 39231528 PMCID: PMC11421073 DOI: 10.1021/acs.nanolett.4c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
There is evidence of the presence of intercalated water between graphene and the substrate in electronic devices. However, a proper understanding of the impact of this phenomenon, which causes important limitations for the optimization of graphene-based devices operating in aqueous electrolytes, is missing. We used graphene-based electrodes on insulating and conducting substrates to evaluate the impact of intercalated water by combining experimental techniques with numerical simulations. Results show that the capacitance of the conductive substrate/graphene electrodes is significantly higher than that of the insulating substrate/graphene ones. Meanwhile, Raman spectroscopy demonstrates that graphene charge modulation with the applied potential is independent of the substrate conductivity. We found that this intriguing behavior is influenced by the water intercalation phenomena and governed by the substrate conductive nature. This work contributes to the understanding of the electric response of graphene-based devices in an aqueous environment and of the methods to measure and model it.
Collapse
Affiliation(s)
- Marta Delgà-Fernández
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | - Alejandro Toral-Lopez
- Pervasive Electronics Advanced Research Laboratory (PEARL), Department of Electronics and Computer Technology, University of Granada, 18071 Granada, Spain
| | - Anton Guimerà-Brunet
- Institut de Microelectrònica de Barcelona (IMB-CNM), CSIC, Esfera UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - A Pablo Pérez-Marín
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | - Enrique G Marin
- Pervasive Electronics Advanced Research Laboratory (PEARL), Department of Electronics and Computer Technology, University of Granada, 18071 Granada, Spain
| | - Andrés Godoy
- Pervasive Electronics Advanced Research Laboratory (PEARL), Department of Electronics and Computer Technology, University of Granada, 18071 Granada, Spain
| | - Jose A Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- ICREA, 08010 Barcelona, Spain
| | - Elena Del Corro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| |
Collapse
|
3
|
Wang Y, Tang F, Yu X, Ohto T, Nagata Y, Bonn M. Heterodyne-Detected Sum-Frequency Generation Vibrational Spectroscopy Reveals Aqueous Molecular Structure at the Suspended Graphene/Water Interface. Angew Chem Int Ed Engl 2024; 63:e202319503. [PMID: 38478726 DOI: 10.1002/anie.202319503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 04/12/2024]
Abstract
Graphene, a transparent two-dimensional conductive material, has brought extensive new perspectives and prospects to various aqueous technological systems, such as desalination membranes, chemical sensors, energy storage, and energy conversion devices. Yet, the molecular-level details of graphene in contact with aqueous electrolytes, such as water orientation and hydrogen bond structure, remain elusive or controversial. Here, we employ surface-specific heterodyne-detected sum-frequency generation (HD-SFG) vibrational spectroscopy to re-examine the water molecular structure at a freely suspended graphene/water interface. We compare the response from the air/graphene/water system to that from the air/water interface. Our results indicate that theχ y y z 2 ${{\chi }_{yyz}^{\left(2\right)}}$ spectrum recorded from the air/graphene/water system arises from the topmost 1-2 water layers in contact with the graphene, with the graphene itself not generating a significant SFG response. Compared to the air/water interface response, the presence of monolayer graphene weakly affects the interfacial water. Graphene weakly affects the dangling O-H group, lowering its frequency through its interaction with the graphene sheet, and has a very small effect on the hydrogen-bonded O-H group. Molecular dynamics simulations confirm our experimental observation. Our work provides molecular insight into the interfacial structure at a suspended graphene/water interface, relevant to various technological applications of graphene.
Collapse
Affiliation(s)
- Yongkang Wang
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Fujie Tang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM, 361005, Xiamen, China
| | - Xiaoqing Yu
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tatsuhiko Ohto
- Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
4
|
Sanz Matias A, Roncoroni F, Sundararaman S, Prendergast D. Ca-dimers, solvent layering, and dominant electrochemically active species in Ca(BH 4) 2 in THF. Nat Commun 2024; 15:1397. [PMID: 38360965 PMCID: PMC11258298 DOI: 10.1038/s41467-024-45672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Divalent ions (Mg, Ca, and Zn) are being considered as competitive, safe, and earth-abundant alternatives to Li-ion electrochemistry, but present challenges for stable cycling due to undesirable interfacial phenomena. We explore the formation of electroactive species in the electrolyte Ca(BH4)2∣THF using molecular dynamics coupled with a continuum model of bulk and interfacial speciation. Free-energy analysis and unsupervised learning indicate a majority population of neutral Ca dimers and monomers with diverse molecular conformations and an order of magnitude lower concentration of the primary electroactive charged species - the monocation, CaBH[Formula: see text] - produced via disproportionation of neutral complexes. Dense layering of THF molecules within ~1 nm of the electrode surface strongly modulates local electrolyte species populations. A dramatic increase in monocation population in this interfacial zone is induced at negative bias. We see no evidence for electrochemical activity of fully-solvated Ca2+. The consequences for performance are discussed in light of this molecular-scale insight.
Collapse
Affiliation(s)
- Ana Sanz Matias
- Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Fabrice Roncoroni
- Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Siddharth Sundararaman
- Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - David Prendergast
- Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Olivieri JF, Hynes JT, Laage D. Water dynamics and sum-frequency generation spectra at electrode/aqueous electrolyte interfaces. Faraday Discuss 2024; 249:289-302. [PMID: 37791579 DOI: 10.1039/d3fd00103b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The dynamics of water at interfaces between an electrode and an electrolyte is essential for the transport of redox species and for the kinetics of charge transfer reactions next to the electrode. However, while the effects of electrode potential and ion concentration on the electric double layer structure have been extensively studied, a comparable understanding of dynamical aspects is missing. Interfacial water dynamics presents challenges since it is expected to result from the complex combination of water-water, water-electrode and water-ion interactions. Here we perform molecular dynamics simulations of aqueous NaCl solutions at the interface with graphene electrodes, and examine the impact of both ion concentration and electrode potential on interfacial water reorientational dynamics. We show that for all salt concentrations water dynamics exhibits strongly asymmetric behavior: it slows down at increasingly positively charged electrodes but it accelerates at increasingly negatively charged electrodes. At negative potentials water dynamics is determined mostly by the electrode potential value, but in contrast at positive potentials it is governed both by ion-water and electrode-water interactions. We show how these strikingly different behaviors are determined by the interfacial hydrogen-bond network structure and by the ions' surface affinity. Finally, we indicate how the structural rearrangements impacting water dynamics can be probed via vibrational sum-frequency generation spectroscopy.
Collapse
Affiliation(s)
- Jean-François Olivieri
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - James T Hynes
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Damien Laage
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
6
|
Carr AJ, Lee SE, Uysal A. Ion and water adsorption to graphene and graphene oxide surfaces. NANOSCALE 2023; 15:14319-14337. [PMID: 37561081 DOI: 10.1039/d3nr02452k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Graphene and graphene oxide (GO) are two particularly promising nanomaterials for a range of applications including energy storage, catalysis, and separations. Understanding the nanoscale interactions between ions and water near graphene and GO surfaces is critical for advancing our fundamental knowledge of these systems and downstream application success. This minireview highlights the necessity of using surface-specific experimental probes and computational techniques to fully characterize these interfaces, including the nanomaterial, surrounding water, and any adsorbed ions, if present. Key experimental and simulation studies considering water and ion structures near both graphene and GO are discussed. The major findings are: water forms 1-3 hydration layers near graphene; ions adsorb electrostatically to graphene under an applied potential; the chemical and physical properties of GO vary considerably depending on the synthesis route; and these variations influence water and ion adsorption to GO. Lastly, we offer outlooks and perspectives for these research areas.
Collapse
Affiliation(s)
- Amanda J Carr
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Seung Eun Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
7
|
Wang Y, Seki T, Liu X, Yu X, Yu CC, Domke KF, Hunger J, Koper MTM, Chen Y, Nagata Y, Bonn M. Direct Probe of Electrochemical Pseudocapacitive pH Jump at a Graphene Electrode. Angew Chem Int Ed Engl 2023; 62:e202216604. [PMID: 36592114 DOI: 10.1002/anie.202216604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/03/2023]
Abstract
Molecular-level insight into interfacial water at a buried electrode interface is essential in electrochemistry, but spectroscopic probing of the interface remains challenging. Here, using surface-specific heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy, we directly access the interfacial water in contact with the graphene electrode supported on calcium fluoride (CaF2 ). We find phase transition-like variations of the HD-SFG spectra vs. applied potentials, which arises not from the charging/discharging of graphene but from the charging/discharging of the CaF2 substrate through the pseudocapacitive process. The potential-dependent spectra are nearly identical to the pH-dependent spectra, evidencing that the pseudocapacitive behavior is associated with a substantial local pH change induced by water dissociation between the CaF2 and graphene. Our work evidences the local molecular-level effects of pseudocapacitive charging at an electrode/aqueous electrolyte interface.
Collapse
Affiliation(s)
- Yongkang Wang
- School of Mechanical Engineering, Southeast University, 211189, Nanjing, China.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xuan Liu
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden (The, Netherlands
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katrin F Domke
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,University Duisburg-Essen, Faculty of Chemistry, Universitätsstraße 5, 45141, Essen, Germany
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden (The, Netherlands
| | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, 211189, Nanjing, China
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
8
|
Wang Y, Seki T, Yu X, Yu CC, Chiang KY, Domke KF, Hunger J, Chen Y, Nagata Y, Bonn M. Chemistry governs water organization at a graphene electrode. Nature 2023; 615:E1-E2. [PMID: 36859590 DOI: 10.1038/s41586-022-05669-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/19/2022] [Indexed: 03/03/2023]
Affiliation(s)
- Yongkang Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Takakazu Seki
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Katrin F Domke
- Max Planck Institute for Polymer Research, Mainz, Germany
- Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | | | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, Nanjing, China.
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|