1
|
Kállai BM, Sawasaki T, Endo Y, Mészáros T. Half a Century of Progress: The Evolution of Wheat Germ-Based In Vitro Translation into a Versatile Protein Production Method. Int J Mol Sci 2025; 26:3577. [PMID: 40332070 PMCID: PMC12026531 DOI: 10.3390/ijms26083577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The first demonstration of wheat germ extract (WGE)-based in vitro translation synthesising a protein from exogenously introduced messenger ribonucleic acid (mRNA) was published approximately fifty years ago. Since then, there have been numerous crucial improvements to the WGE-based in vitro translation, resulting in a significant increase in yield and the development of high-throughput protein-producing platforms. These developments have transformed the original setup into a versatile eukaryotic protein production method with broad applications. The present review explores the theoretical background of the implemented modifications and brings a panel of examples for WGE applications in high-throughput protein studies and synthesis of challenging-to-produce proteins such as protein complexes, extracellular proteins, and membrane proteins. It also highlights the unique advantages of in vitro translation as an open system for synthesising radioactively labelled proteins, as illustrated by numerous publications using WGE to meet the protein demands of these studies. This review aims to orientate readers in finding the most appropriate WGE arrangement for their specific needs and demonstrate that a deeper understanding of the system modifications will help them make further adjustments to the reaction conditions for synthesising difficult-to-express proteins.
Collapse
Affiliation(s)
- Brigitta M. Kállai
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary;
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan;
| | - Yaeta Endo
- Ehime Prefectural University of Health Sciences, 543 Takooda, Tobe-cho 791-2101, Iyo-gun, Japan;
| | - Tamás Mészáros
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary;
| |
Collapse
|
2
|
Kishikawa JI, Nishida Y, Nakano A, Kato T, Mitsuoka K, Okazaki KI, Yokoyama K. Rotary mechanism of the prokaryotic V o motor driven by proton motive force. Nat Commun 2024; 15:9883. [PMID: 39567487 PMCID: PMC11579504 DOI: 10.1038/s41467-024-53504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
ATP synthases play a crucial role in energy production by utilizing the proton motive force (pmf) across the membrane to rotate their membrane-embedded rotor c-ring, and thus driving ATP synthesis in the hydrophilic catalytic hexamer. However, the mechanism of how pmf converts into c-ring rotation remains unclear. This study presents a 2.8 Å cryo-EM structure of the Vo domain of V/A-ATPase from Thermus thermophilus, revealing precise orientations of glutamate (Glu) residues in the c12-ring. Three Glu residues face a water channel, with one forming a salt bridge with the Arginine in the stator (a/Arg). Molecular dynamics (MD) simulations show that protonation of specific Glu residues triggers unidirectional Brownian motion of the c12-ring towards ATP synthesis. When the key Glu remains unprotonated, the salt bridge persists, blocking rotation. These findings suggest that asymmetry in the protonation of c/Glu residues biases c12-ring movement, facilitating rotation and ATP synthesis.
Collapse
Affiliation(s)
- Jun-Ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki-Hashiuecho, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yui Nishida
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Atsuki Nakano
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, 567-0047, Japan
| | - Kei-Ichi Okazaki
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi, 444-8585, Japan.
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
3
|
Blanc FEC, Hummer G. Mechanism of proton-powered c-ring rotation in a mitochondrial ATP synthase. Proc Natl Acad Sci U S A 2024; 121:e2314199121. [PMID: 38451940 PMCID: PMC10945847 DOI: 10.1073/pnas.2314199121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 03/09/2024] Open
Abstract
Proton-powered c-ring rotation in mitochondrial ATP synthase is crucial to convert the transmembrane protonmotive force into torque to drive the synthesis of adenosine triphosphate (ATP). Capitalizing on recent cryo-EM structures, we aim at a structural and energetic understanding of how functional directional rotation is achieved. We performed multi-microsecond atomistic simulations to determine the free energy profiles along the c-ring rotation angle before and after the arrival of a new proton. Our results reveal that rotation proceeds by dynamic sliding of the ring over the a-subunit surface, during which interactions with conserved polar residues stabilize distinct intermediates. Ordered water chains line up for a Grotthuss-type proton transfer in one of these intermediates. After proton transfer, a high barrier prevents backward rotation and an overall drop in free energy favors forward rotation, ensuring the directionality of c-ring rotation required for the thermodynamically disfavored ATP synthesis. The essential arginine of the a-subunit stabilizes the rotated configuration through a salt bridge with the c-ring. Overall, we describe a complete mechanism for the rotation step of the ATP synthase rotor, thereby illuminating a process critical to all life at atomic resolution.
Collapse
Affiliation(s)
- Florian E. C. Blanc
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main60438, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main60438, Germany
- Institute for Biophysics, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| |
Collapse
|
4
|
Akutsu H. Strategies for elucidation of the structure and function of the large membrane protein complex, F oF 1-ATP synthase, by nuclear magnetic resonance. Biophys Chem 2023; 296:106988. [PMID: 36898347 DOI: 10.1016/j.bpc.2023.106988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Nuclear magnetic resonance (NMR) investigation of large membrane proteins requires well-focused questions and critical techniques. Here, research strategies for FoF1-ATP synthase, a membrane-embedded molecular motor, are reviewed, focusing on the β-subunit of F1-ATPase and c-subunit ring of the enzyme. Segmental isotope-labeling provided 89% assignment of the main chain NMR signals of thermophilic Bacillus (T)F1β-monomer. Upon nucleotide binding to Lys164, Asp252 was shown to switch its hydrogen-bonding partner from Lys164 to Thr165, inducing an open-to-closed bend motion of TF1β-subunit. This drives the rotational catalysis. The c-ring structure determined by solid-state NMR showed that cGlu56 and cAsn23 of the active site took a hydrogen-bonded closed conformation in membranes. In 505 kDa TFoF1, the specifically isotope-labeled cGlu56 and cAsn23 provided well-resolved NMR signals, which revealed that 87% of the residue pairs took a deprotonated open conformation at the Foa-c subunit interface, whereas they were in the closed conformation in the lipid-enclosed region.
Collapse
Affiliation(s)
- Hideo Akutsu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
5
|
Parkin D, Takano M. Coulombic Organization in Membrane-Embedded Rotary Motor of ATP Synthase. J Phys Chem B 2023; 127:1552-1562. [PMID: 36734508 DOI: 10.1021/acs.jpcb.2c07875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The electrochemical potential difference of protons across the membrane is used to synthesize ATP through the proton-motive rotatory motion of the membrane-embedded region of ATP synthase called Fo. In this study, we illuminate the unsolved proton-motive rotary mechanism of Fo on the basis of atomistic simulation with full description of protein, lipid, and water molecules, and highlight the underlying Coulombic design. We first show that a water channel is spontaneously formed at the interfacial region between the rotor (c-ring) and the stator (a-subunit). The observed water channel is a full channel penetrating the membrane, but a Coulomb barrier by a strictly conserved arginine of the a-subunit dominates at the midpoint of the full channel, preventing proton leakage. Our molecular dynamics simulation further demonstrates that the Coulomb attraction between the arginine and the essential glutamic acid of the c-subunit drives the c-ring rotation. We finally illustrate that the charge-state changes of the glutamic acids, enabled by the electrochemical potential difference of proton and the thermal motion, can produce unidirectional rotation of the c-ring.
Collapse
Affiliation(s)
- Dan Parkin
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo169-8555, Japan
| | - Mitsunori Takano
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo169-8555, Japan.,Department of Pure and Applied Physics, Waseda University, 3-8-1 Okubo, Shinjuku-Ku, Tokyo169-8555, Japan
| |
Collapse
|