1
|
Maeda Y, Iguchi Y, Zhao P, Suwa A, Taki Y, Kawada K, Yamada M, Ehara M, Kako M. Switching Photoluminescence Wavelength of Arylated Single-walled Carbon Nanotubes by Utilizing Steric Hindrance in Reductive Arylation. Chemistry 2025; 31:e202404529. [PMID: 39831380 PMCID: PMC11874903 DOI: 10.1002/chem.202404529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
(6,5)-enriched single-walled carbon nanotubes (SWCNTs) were reductively arylated using sodium naphthalenide and monosubstituted and disubstituted iodobenzene derivatives to control their photoluminescence (PL) properties. In the reactions with substituted iodobenzenes, the degree of functionalization was influenced by the substituents on the aryl groups depending on their position, which allowed us to realize control of the PL intensity and wavelength. The methyl or methoxy group at the 2-position and methyl groups at the 3,5-positions of the phenyl group respectively increased the E11** PL and E11* PL selectivity at ~1230 and ~1100 nm. Methyl groups at the 2,6-positions emerged two new PL peaks. These PL characteristics were prominently observed in the (6,4) SWCNT adducts, which were separated by gel chromatography. Theoretical calculations of model compounds showed that the effect of the substituent at the ortho-position on the relative stability of the isomers with different binding configurations was greater for the diarylated SWCNTs than for the hydroarylated SWCNTs. Experimental and theoretical calculation results revealed that the choice of substituents on the benzene ring was effectively used to modulate the PL wavelength, and these substituents had a considerable effect on the favorable binding configuration of the SWCNT adduct and relative stability and PL wavelength of the conformational isomers.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Yui Iguchi
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Pei Zhao
- Research Center for Computational ScienceInstitute for Molecular Science444-8585OkazakiJapan
| | - Atsushi Suwa
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Yasunari Taki
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Kentaro Kawada
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Michio Yamada
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Masahiro Ehara
- Research Center for Computational ScienceInstitute for Molecular Science444-8585OkazakiJapan
| | - Masahiro Kako
- Department of Engineering ScienceThe University of Electro-Communications182-8585TokyoJapan
| |
Collapse
|
2
|
Taborowska P, Dzienia A, Janas D. Unraveling aryl peroxide chemistry to enrich optical properties of single-walled carbon nanotubes. Chem Sci 2025; 16:1374-1389. [PMID: 39703412 PMCID: PMC11653410 DOI: 10.1039/d4sc04785k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Harnessing the unique optical properties of chirality-enriched single-walled carbon nanotubes (SWCNTs) is the key to unlocking the application of SWCNTs in photonics. Recently, it has been discovered that chemical modification of SWCNTs greatly increases their potential in this context. Despite the dynamic progress in this area, the mechanism of the chemical modification of SWCNTs and the impact of the reaction conditions on the properties of the obtained functional nanomaterials remain unclear. In this study, we demonstrate how the reaction environment influences the observed fluorescence pattern of SWCNTs after modification with benzoyloxy radicals generated in situ. The obtained results reveal that each diacyl peroxide molecule can generate either one or two radicals by two different mechanisms, i.e., induced or spontaneous decomposition. Through proper selection of the reactant concentration, process temperature, and solvent, we were able to activate one or both radical decay pathways. In addition, the choice of a solvent, such as tetrahydrofuran or acetonitrile, allowed drastic changes in the functionalization process. Consequently, the SWCNT surface was grafted with functional groups via C-C bonds using radicals derived from the solvent molecules instead of attaching an aromatic moiety from the reactant present in the system through the expected C-O linkage. Verification of the structure of the chemically bound functional groups through hydrolysis opens the route to further modification of SWCNT surfaces using the labile ester connection. By gaining a better understanding of the emergence and behavior of the generated radicals, we demonstrate the possibility of controlling the density of introduced defects, as well as the selectivity of the functionalization process. The identification of the underlying chemical pathways responsible for the functionalization of SWCNTs paves the way for the design of precise methods of SWCNT modification to adjust their photonic characteristics for specific applications.
Collapse
Affiliation(s)
- Patrycja Taborowska
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| | - Andrzej Dzienia
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| |
Collapse
|
3
|
Qu H, Han Y, Fortner J, Wu X, Kilina S, Kilin D, Tretiak S, Wang Y. [2 + 2] Cycloaddition Produces Divalent Organic Color-Centers with Reduced Heterogeneity in Single-Walled Carbon Nanotubes. J Am Chem Soc 2024; 146:23582-23590. [PMID: 39101632 DOI: 10.1021/jacs.4c08105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Organic color centers (OCCs), generated by the covalent functionalization of single-walled carbon nanotubes, have been exploited for chemical sensing, bioimaging, and quantum technologies. However, monovalent OCCs can assume at least 6 different bonding configurations on the sp2 carbon lattice of a chiral nanotube, resulting in heterogeneous OCC photoluminescence emissions. Herein, we show that a heat-activated [2 + 2] cycloaddition reaction enables the synthesis of divalent OCCs with a reduced number of atomic bonding configurations. The chemistry occurs by simply mixing enophile molecules (e.g., methylmaleimide, maleic anhydride, and 4-cyclopentene-1,3-dione) with an ethylene glycol suspension of SWCNTs at elevated temperature (70-140 °C). Unlike monovalent OCC chemistries, we observe just three OCC emission peaks that can be assigned to the three possible bonding configurations of the divalent OCCs based on density functional theory calculations. Notably, these OCC photoluminescence peaks can be controlled by temperature to decrease the emission heterogeneity even further. This divalent chemistry provides a scalable way to synthesize OCCs with tightly controlled emissions for emerging applications.
Collapse
Affiliation(s)
- Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Jacob Fortner
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Sergei Tretiak
- Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Husel L, Trapp J, Scherzer J, Wu X, Wang P, Fortner J, Nutz M, Hümmer T, Polovnikov B, Förg M, Hunger D, Wang Y, Högele A. Cavity-enhanced photon indistinguishability at room temperature and telecom wavelengths. Nat Commun 2024; 15:3989. [PMID: 38734738 PMCID: PMC11088649 DOI: 10.1038/s41467-024-48119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Indistinguishable single photons in the telecom-bandwidth of optical fibers are indispensable for long-distance quantum communication. Solid-state single photon emitters have achieved excellent performance in key benchmarks, however, the demonstration of indistinguishability at room-temperature remains a major challenge. Here, we report room-temperature photon indistinguishability at telecom wavelengths from individual nanotube defects in a fiber-based microcavity operated in the regime of incoherent good cavity-coupling. The efficiency of the coupled system outperforms spectral or temporal filtering, and the photon indistinguishability is increased by more than two orders of magnitude compared to the free-space limit. Our results highlight a promising strategy to attain optimized non-classical light sources.
Collapse
Affiliation(s)
- Lukas Husel
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Julian Trapp
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Johannes Scherzer
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Manuel Nutz
- Qlibri GmbH, Maistr. 67, 80337, München, Germany
| | | | - Borislav Polovnikov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Michael Förg
- Qlibri GmbH, Maistr. 67, 80337, München, Germany
| | - David Hunger
- Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799, München, Germany.
| |
Collapse
|
5
|
Kim M, McCann JJ, Fortner J, Randall E, Chen C, Chen Y, Yaari Z, Wang Y, Koder RL, Heller DA. Quantum Defect Sensitization via Phase-Changing Supercharged Antibody Fragments. J Am Chem Soc 2024; 146:12454-12462. [PMID: 38687180 PMCID: PMC11498269 DOI: 10.1021/jacs.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Quantum defects in single-walled carbon nanotubes promote exciton localization, which enables potential applications in biodevices and quantum light sources. However, the effects of local electric fields on the emissive energy states of quantum defects and how they can be controlled are unexplored. Here, we investigate quantum defect sensitization by engineering an intrinsically disordered protein to undergo a phase change at a quantum defect site. We designed a supercharged single-chain antibody fragment (scFv) to enable a full ligand-induced folding transition from an intrinsically disordered state to a compact folded state in the presence of a cytokine. The supercharged scFv was conjugated to a quantum defect to induce a substantial local electric change upon ligand binding. Employing the detection of a proinflammatory biomarker, interleukin-6, as a representative model system, supercharged scFv-coupled quantum defects exhibited robust fluorescence wavelength shifts concomitant with the protein folding transition. Quantum chemical simulations suggest that the quantum defects amplify the optical response to the localization of charges produced upon the antigen-induced folding of the proteins, which is difficult to achieve in unmodified nanotubes. These findings portend new approaches to modulate quantum defect emission for biomarker sensing and protein biophysics and to engineer proteins to modulate binding signal transduction.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James J. McCann
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ewelina Randall
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yu Chen
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Zvi Yaari
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ronald L. Koder
- Department of Physics, City College of New York, New York, NY 10031, USA
- Graduate Programs of Physics, Biology, Chemistry, and Biochemistry, The Graduate Center of City College of New York, New York, NY 10016, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
6
|
Chen S, Li Y, Chen X, Li L, Lu Q, Guo E, Si C, Wei M, Han X. Isomerization of surface functionalized SWCNTs and the critical influence on photoluminescence: static calculations and excited-state dynamics simulations. Phys Chem Chem Phys 2024; 26:12003-12008. [PMID: 38576321 DOI: 10.1039/d3cp05115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) functionalized with sparse surface chemical groups are promising for a variety of optical applications such as quantum information and bio-imaging. However, the luminescence efficiencies and stability, two key aspects, undoubtedly govern their practical usage. Herein, we assess the surface migration of oxygen and triazine groups on as-modified SWCNT fragments by adopting transition state theory and explore the de-excitation of oxygen-functionalized SWCNT fragments by performing non-adiabatic excited-state dynamics simulations. According to the predicted moderate or even small reaction barriers, the migration of both oxygen and triazine groups is feasible from an sp3 defect configuration forming an energetically more stable sp2 configuration at moderate or even room temperatures. Such isomerization leads to drastically different light emission capabilities as indicated by the large or zero oscillator strengths. During the dynamics simulations, the lowest excited singlet (S1) state rapidly decays in energy within 20 fs and then fluctuates until the end, providing insights into the emission mechanism of SWCNTs. This study highlights the potential intrinsic limitations of surface-functionalized SWCNTs for luminescence applications.
Collapse
Affiliation(s)
- Shunwei Chen
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yi Li
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xinxin Chen
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Lingyun Li
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qifang Lu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Enyan Guo
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Conghui Si
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingzhi Wei
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiujun Han
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
7
|
Wu X, Kim M, Wang LJ, Veetil AK, Wang Y. Programming sp 3 Quantum Defects along Carbon Nanotubes with Halogenated DNA. J Am Chem Soc 2024; 146:8826-8831. [PMID: 38526163 PMCID: PMC11520905 DOI: 10.1021/jacs.3c14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Atomic defect color centers in solid-state systems hold immense potential to advance various quantum technologies. However, the fabrication of high-quality, densely packed defects presents a significant challenge. Herein we introduce a DNA-programmable photochemical approach for creating organic color-center quantum defects on semiconducting single-walled carbon nanotubes (SWCNTs). Key to this precision defect chemistry is the strategic substitution of thymine with halogenated uracil in DNA strands that are orderly wrapped around the nanotube. Photochemical activation of the reactive uracil initiates the formation of sp3 defects along the nanotube as deep exciton traps, with a pronounced photoluminescence shift from the nanotube band gap emission (by 191 meV for (6,5)-SWCNTs). Furthermore, by altering the DNA spacers, we achieve systematic control over the defect placements along the nanotube. This method, bridging advanced molecular chemistry with quantum materials science, marks a crucial step in crafting quantum defects for critical applications in quantum information science, imaging, and sensing.
Collapse
Affiliation(s)
- Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Lucy J. Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Abhindev Kizhakke Veetil
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
8
|
Wieland S, El Yumin AA, Settele S, Zaumseil J. Photo-Activated, Solid-State Introduction of Luminescent Oxygen Defects into Semiconducting Single-Walled Carbon Nanotubes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2012-2021. [PMID: 38352856 PMCID: PMC10860128 DOI: 10.1021/acs.jpcc.3c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
Oxygen defects in semiconducting single-walled carbon nanotubes (SWCNTs) are localized disruptions in the carbon lattice caused by the formation of epoxy or ether groups, commonly through wet-chemical reactions. The associated modifications of the electronic structure can result in luminescent states with emission energies below those of pristine SWCNTs in the near-infrared range, which makes them promising candidates for applications in biosensing and as single-photon emitters. Here, we demonstrate the controlled introduction of luminescent oxygen defects into networks of monochiral (6,5) SWCNTs using a solid-state photocatalytic approach. UV irradiation of SWCNTs on the photoreactive surfaces of the transition metal oxides TiOx and ZnOx in the presence of trace amounts of water and oxygen results in the creation of reactive oxygen species that initiate radical reactions with the carbon lattice and the formation of oxygen defects. The created ether-d and epoxide-l defect configurations give rise to two distinct red-shifted emissive features. The chemical and dielectric properties of the photoactive oxides influence the final defect emission properties, with oxygen-functionalized SWCNTs on TiOx substrates being brighter than those on ZnOx or pristine SWCNTs on glass. The photoinduced functionalization of nanotubes is further employed to create lateral patterns of oxygen defects in (6,5) SWCNT networks with micrometer resolution and thus spatially controlled defect emission.
Collapse
Affiliation(s)
- Sonja Wieland
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | - Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Maeda Y, Zhao P, Ehara M. Recent progress in controlling the photoluminescence properties of single-walled carbon nanotubes by oxidation and alkylation. Chem Commun (Camb) 2023; 59:14497-14508. [PMID: 38009193 DOI: 10.1039/d3cc05065c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The functionalization of single-walled carbon nanotubes (SWCNTs) has received considerable attention in the last decade since highly efficient near-infrared photoluminescence (PL) has been observed to be red-shifted compared with the intrinsic PL peak of pristine SWCNTs. The PL wavelength has been manipulated using arylation reactions with aryldiazonium salts and aryl halides. Additionally, simple oxidation and alkylation reactions have proven effective in extensively adjusting the PL wavelength, with the resulting PL efficiency varying based on the chosen reaction techniques and molecular structures. This review discusses the latest developments in tailoring the PL attributes of SWCNTs by oxidation and alkylation processes. (6,5) SWCNTs exhibit intrinsic emission at 980 nm, and the PL wavelength can be controlled in the range of 1100-1320 nm by chemical modification. In addition, recent developments in chiral separation techniques have increased our understanding of the control of the PL wavelength, extending to the selection of excitation and emission wavelengths, by chemical modification of SWCNTs with different chiral indices.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| |
Collapse
|
10
|
Heppe BJ, Dzombic N, Keil JM, Sun XL, Ao G. Solvent Isotope Effects on the Creation of Fluorescent Quantum Defects in Carbon Nanotubes by Aryl Diazonium Chemistry. J Am Chem Soc 2023; 145:25621-25631. [PMID: 37971308 DOI: 10.1021/jacs.3c07341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The integration of aryl diazonium and carbon nanotube chemistries has offered rich and versatile tools for creating nanomaterials of unique optical and electronic properties in a controllable fashion. The diazonium reaction with single-wall carbon nanotubes (SWCNTs) is known to proceed through a radical or carbocation mechanism in aqueous solutions, with deuterated water (D2O) being the frequently used solvent. Here, we show strong water solvent isotope effects on the aryl diazonium reaction with SWCNTs for creating fluorescent quantum defects using water (H2O) and D2O. We found a deduced reaction constant of ∼18.2 times larger value in D2O than in H2O, potentially due to their different chemical properties. We also observed the generation of new defect photoluminescence over a broad concentration range of diazonium reactants in H2O, as opposed to a narrow window of reaction conditions in D2O under UV excitation. Without UV light, the physical adsorption of diazonium on the surface of SWCNTs led to the fluorescence quenching of nanotubes. These findings provide important insights into the aryl diazonium chemistry with carbon nanotubes for creating promising material platforms for optical sensing, imaging, and quantum communication technologies.
Collapse
Affiliation(s)
- Brandon J Heppe
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Nina Dzombic
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Joseph M Keil
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Geyou Ao
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| |
Collapse
|
11
|
Zorn N, Settele S, Sebastian FL, Lindenthal S, Zaumseil J. Tuning Electroluminescence from Functionalized SWCNT Networks Further into the Near-Infrared. ACS APPLIED OPTICAL MATERIALS 2023; 1:1706-1714. [PMID: 37915970 PMCID: PMC10616844 DOI: 10.1021/acsaom.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Near-infrared electroluminescence from carbon-based emitters, especially in the second biological window (NIR-II) or at telecommunication wavelengths, is difficult to achieve. Single-walled carbon nanotubes (SWCNTs) have been proposed as a possible solution due to their tunable and narrowband emission in the near-infrared region and high charge carrier mobilities. Furthermore, the covalent functionalization of SWCNTs with a controlled number of luminescent sp3 defects leads to even more red-shifted photoluminescence with enhanced quantum yields. Here, we demonstrate that by tailoring the binding configuration of the introduced sp3 defects and hence tuning their optical trap depth, we can generate emission from polymer-sorted (6,5) and (7,5) nanotubes that is mainly located in the telecommunication O-band (1260-1360 nm). Networks of these functionalized nanotubes are integrated in ambipolar, light-emitting field-effect transistors to yield the corresponding narrowband near-infrared electroluminescence. Further investigation of the current- and carrier density-dependent electro- and photoluminescence spectra enables insights into the impact of different sp3 defects on charge transport in networks of functionalized SWCNTs.
Collapse
Affiliation(s)
- Nicolas
F. Zorn
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Finn L. Sebastian
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
12
|
Ma C, Schrage CA, Gretz J, Akhtar A, Sistemich L, Schnitzler L, Li H, Tschulik K, Flavel BS, Kruss S. Stochastic Formation of Quantum Defects in Carbon Nanotubes. ACS NANO 2023; 17:15989-15998. [PMID: 37527201 DOI: 10.1021/acsnano.3c04314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Small perturbations in the structure of materials significantly affect their properties. One example is single wall carbon nanotubes (SWCNTs), which exhibit chirality-dependent near-infrared (NIR) fluorescence. They can be modified with quantum defects through the reaction with diazonium salts, and the number or distribution of these defects determines their photophysics. However, the presence of multiple chiralities in typical SWCNT samples complicates the identification of defect-related emission features. Here, we show that quantum defects do not affect aqueous two-phase extraction (ATPE) of different SWCNT chiralities into different phases, which suggests low numbers of defects. For bulk samples, the bandgap emission (E11) of monochiral (6,5)-SWCNTs decreases, and the defect-related emission feature (E11*) increases with diazonium salt concentration and represents a proxy for the defect number. The high purity of monochiral samples from ATPE allows us to image NIR fluorescence contributions (E11 = 986 nm and E11* = 1140 nm) on the single SWCNT level. Interestingly, we observe a stochastic (Poisson) distribution of quantum defects. SWCNTs have most likely one to three defects (for low to high (bulk) quantum defect densities). Additionally, we verify this number by following single reaction events that appear as discrete steps in the temporal fluorescence traces. We thereby count single reactions via NIR imaging and demonstrate that stochasticity plays a crucial role in the optical properties of SWCNTs. These results show that there can be a large discrepancy between ensemble and single particle experiments/properties of nanomaterials.
Collapse
Affiliation(s)
- Chen Ma
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | | | - Juliana Gretz
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Anas Akhtar
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Linda Sistemich
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Lena Schnitzler
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76344, Germany
| | - Kristina Tschulik
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76344, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg 47057, Germany
| |
Collapse
|
13
|
Maeda Y, Suzuki Y, Konno Y, Zhao P, Kikuchi N, Yamada M, Mitsuishi M, Dao ATN, Kasai H, Ehara M. Selective emergence of photoluminescence at telecommunication wavelengths from cyclic perfluoroalkylated carbon nanotubes. Commun Chem 2023; 6:159. [PMID: 37524908 PMCID: PMC10390534 DOI: 10.1038/s42004-023-00950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
Chemical functionalisation of semiconducting single-walled carbon nanotubes (SWNTs) can tune their local band gaps to induce near-infrared (NIR) photoluminescence (PL). However, tuning the PL to telecommunication wavelengths (>1300 nm) remains challenging. The selective emergence of NIR PL at the longest emission wavelength of 1320 nm was successfully achieved in (6,5) SWNTs via cyclic perfluoroalkylation. Chiral separation of the functionalised SWNTs showed that this functionalisation was also effective in SWNTs with five different chiral angles. The local band gap modulation mechanism was also studied using density functional theory calculations, which suggested the effects of the addenda and addition positions on the emergence of the longest-wavelength PL. These findings increase our understanding of the functionalised SWNT structure and methods for controlling the local band gap, which will contribute to the development and application of NIR light-emitting materials with widely extended emission and excitation wavelengths.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan.
| | - Yasuhiro Suzuki
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Yui Konno
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, 444-8585, Japan.
| | - Nobuhiro Kikuchi
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Masaya Mitsuishi
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Anh T N Dao
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
- Graduate School of Engineering, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, 444-8585, Japan.
| |
Collapse
|
14
|
Wang H, Boghossian AA. Covalent conjugation of proteins onto fluorescent single-walled carbon nanotubes for biological and medical applications. MATERIALS ADVANCES 2023; 4:823-834. [PMID: 36761250 PMCID: PMC9900427 DOI: 10.1039/d2ma00714b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 05/20/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have optical properties that are conducive for biological applications such as sensing, delivery, and imaging. These applications necessitate the immobilization of macromolecules that can serve as therapeutic drugs, molecular templates, or modulators of surface interactions. Although previous studies have focused on non-covalent immobilization strategies, recent advances have introduced covalent functional handles that can preserve or even enhance the SWCNT optical properties. This review presents an overview of covalent sidewall modifications of SWCNTs, with a focus on the latest generation of "sp3 defect" modifications. We summarize and compare the reaction conditions and the reported products of these sp3 chemistries. We further review the underlying photophysics governing SWCNT fluorescence and apply these principles to the fluorescence emitted from these covalently modified SWCNTs. Finally, we provide an outlook on additional chemistries that could be applied to covalently conjugate proteins to these chemically modified, fluorescent SWCNTs. We review the advantages of these approaches, emerging opportunities for further improvement, as well as their implications for enabling new technologies.
Collapse
Affiliation(s)
- Hanxuan Wang
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| | - Ardemis A Boghossian
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| |
Collapse
|
15
|
Fortner J, Wang Y. Quantum Coupling of Two Atomic Defects in a Carbon Nanotube Semiconductor. J Phys Chem Lett 2022; 13:8908-8913. [PMID: 36126326 DOI: 10.1021/acs.jpclett.2c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical defects can create organic color centers in the graphitic lattice of single-walled carbon nanotubes. However, the underlying physics remains somewhat of a mystery. Here we show that two sp3 atomic defects can interact with each other in a way reminiscent of atoms bonding to form molecules. Each defect creates an atom-like mid-gap state within the band gap of the nanotube semiconductor. Two such defects, when brought close to each other, interact to form a split pair of orbitals akin to two hydrogen atoms covalently bonding to form a H2 molecule. This unexpected finding may help in understanding the nature of atomic defects in solids and provide a fresh perspective to the engineering of these color centers.
Collapse
Affiliation(s)
- Jacob Fortner
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|