1
|
Khan M, Sun X, Zada A, Azizi S, Shah MIA, Khan JA, Ragab AH, Taher MA, Abbas Q, Han C. Carbon dioxide, global boiling, and climate carnage, from generation to assimilation, photocatalytic conversion to renewable fuels, and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178629. [PMID: 39879952 DOI: 10.1016/j.scitotenv.2025.178629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
The increasing CO2 concentration in the atmosphere has substantial impacts on the global temperature. For energy sustainability and minimization of the effects of global warming, an approach to understand CO2 capturing and a carbon neutral culture is extremely essential in the present circumstances. The CO2 emission from vehicles and industries can be minimized using energy cost-effective techniques and can be converted more selectively into reusable fuels via thermochemical, electrochemical, photochemical, photocatalytic, electrocatalytic, biological and inorganic carbonate-based approaches. In this review article, we have discussed the effects of increased global temperature on human beings, economy and climate change. Further, we have discussed the photocatalytic conversion of CO2 (PC-CO2) into gaseous and liquid fuels under solar light driven photocatalysis. The adsorption and activation of CO2, its conversion into various intermediates, their stability and selectivity of the final products have been elaborated comprehensively. The conversion mechanisms of CO2 into CO, CH4, alcohol, aldehyde and carboxylic acid have been discussed in detail. The role of defects and exposed facets of photocatalysts, effect of metal and non-metal dopants, and the additive role of co-catalyst on the mechanisms and selectivity of the conversion products have been discussed comprehensively. Finally, future perspective is discussed to highlight the research gap in the PC-CO2. We hope that this article will help to understand the mechanisms of PC-CO2 and will direct researchers to add their role in the reduction of CO2 to control global warming and make life easier on earth in the coming years.
Collapse
Affiliation(s)
- Muhammad Khan
- College of Civil and Transportation Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong Province 518060, China
| | - Xiaohui Sun
- College of Civil and Transportation Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong Province 518060, China.
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0002, South Africa.
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0002, South Africa
| | | | - Javed Ali Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ahmed H Ragab
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mostafa A Taher
- Biology Department, Faculty of Science and Arts, King Khalid University, Mohail Assir, 61321, Saudi Arabia
| | - Qumber Abbas
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Changseok Han
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
2
|
Yang L, Si J, Liang L, Wang Y, Zhu L, Zhang Z. Construction of ZnO/Zn 3In 2S 6/Pt with integrated S-scheme/Schottky heterojunctions for boosting photocatalytic hydrogen evolution and bisphenol a degradation. J Colloid Interface Sci 2023; 649:855-866. [PMID: 37390533 DOI: 10.1016/j.jcis.2023.06.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Photocatalytic water splitting has been identified as a promising solution to tackle the current environmental and energy crisis in the world. However, the challenge of this green technology is the inefficient separation and utilization of photogenerated electron-hole pairs in photocatalysts. To overcome this challenge in one system, a ternary ZnO/Zn3In2S6/Pt material was prepared as a photocatalyst using a stepwise hydrothermal process and in-situ photoreduction deposition. The integrated S-scheme/Schottky heterojunction in the constructed ZnO/Zn3In2S6/Pt photocatalyst enabled it to exhibit efficient photoexcited charge separation/transfer. The evolved H2 reached up to 3.5 mmol g-1h-1. Meanwhile, the ternary composite possessed a high cyclic stability against photo-corrosion under irradiation. Practically, the ZnO/Zn3In2S6/Pt photocatalyst also showed great potential for H2 evolution while simultaneously degrading organic contaminants like bisphenol A. It is hoped in this work that the incorporation of Schottky junctions and S-scheme heterostructures in the construction of photocatalysts would lead to accelerated electron transfer and high photoinduced electron-hole pair separation, respectively, to synergistically enhance the performance of photocatalysts.
Collapse
Affiliation(s)
- Lifang Yang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China.
| | - Jiangju Si
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Liang Liang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Yunfei Wang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Li Zhu
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
3
|
Xue R, Ge P, Xie J, Hu Z, Wang X, Li P. Controllable CO 2 Reduction or Hydrocarbon Oxidation Driven by Entire Solar via Silver Quantum Dots Direct Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207234. [PMID: 36703519 DOI: 10.1002/smll.202207234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/04/2023] [Indexed: 05/18/2023]
Abstract
The current solar-chemical-industry based on semiconductor photocatalyst is impractical. Metal catalysts are extensively employed in thermal- and electro-catalysis industries, but unsuitable for direct-driven photocatalysis. Herein, silver quantum dots (Ag-QDs) are synthesized on support via an in situ photoreduction method, and in situ photocatalysis temperature programmed dynamics chemisorption desorption analyses are designed to demonstrate that Ag-QDs should be the actual photocatalytic sites. The surface plasmon resonance of Ag-QDs could harvests entire visible solar, and the plasmon-driven charge-transfer exhibits opposite directions at the interface when supports are different. Consequently, Ag-QDs could be alternatively regulated as oxidation or reduction active centers. Furthermore, Ag-QDs excite electron tunneling transfer with adsorbate, which does not generate high-energy free-radical intermediates. As a result, the efficiencies of hydrocarbon photooxidation and CO2 photoreduction are improved in several orders of magnitude. Evidently, the Ag-QDs direct photocatalytic technology greatly promotes solar-chemical-industry applications.
Collapse
Affiliation(s)
- Ruiting Xue
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Peng Ge
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
| | - Jun Xie
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ziyuan Hu
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
| | - Xikui Wang
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
| | - Peiqi Li
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
| |
Collapse
|
4
|
Mei B, Sun F, Wei Y, Zhang H, Chen X, Huang W, Ma J, Song F, Jiang Z. In situ catalytic cells for x-ray absorption spectroscopy measurement. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2890236. [PMID: 37171238 DOI: 10.1063/5.0146267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
In catalysis, determining the relationship between the dynamic electronic and atomic structure of the catalysts and the catalytic performance under actual reaction conditions is essential to gain a deeper understanding of the reaction mechanism since the structure evolution induced by the absorption of reactants and intermediates affects the reaction activity. Hard x-ray spectroscopy methods are considered powerful and indispensable tools for the accurate identification of local structural changes, for which the development of suitable in situ reaction cells is required. However, the rational design and development of spectroscopic cells is challenging because a balance between real rigorous reaction conditions and a good signal-to-noise ratio must be reached. Here, we summarize the in situ cells currently used in the monitoring of thermocatalysis, photocatalysis, and electrocatalysis processes, focusing especially on the cells utilized in the BL14W1-x-ray absorption fine structure beamline at the Shanghai Synchrotron Radiation Facility, and highlight recent endeavors on the acquisition of improved spectra under real reaction conditions. This review provides a full overview of the design of in situ cells, aiming to guide the further development of portable and promising cells. Finally, perspectives and crucial factors regarding in situ cells under industrial operating conditions are proposed.
Collapse
Affiliation(s)
- Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Yao Wei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Hao Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University, Suzhou 215123, China
| | - Xing Chen
- Beijing SciStar Technology Co., Ltd., Beijing 100070, China
| | - Weifeng Huang
- Beijing SciStar Technology Co., Ltd., Beijing 100070, China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Fei Song
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Zheng Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Lee JG. Use of A-Site Metal Exsolution from a Hydrated Perovskite Titanate for Combined Steam and CO 2 Reforming of Methane. Inorg Chem 2023; 62:5831-5835. [PMID: 36989537 DOI: 10.1021/acs.inorgchem.3c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Metal segregation from a perovskite oxide (ABO3) usually referring to "redox metal exsolution" has recently been used for in situ preparation of a well-designed catalyst where metal nanoparticles are homogeneously and strongly embedded on perovskite scaffolds upon reduction. The exsolution concept of B-site transition metal ions has grown, but several issues such as segregation of A-site alkaline-earth metal ions (altering electronic structures of the perovskite surface, causing deformation of perovskite structures, or creating undesirable products via side reactions) and carbon formations on metal nanoparticles should be addressed for stable catalysts in greenhouse gas (CO2 or CH4) conversion. Here, we suggest a new approach to designing metal-perovskite composite catalysts via A-site metal segregation from a hydrated perovskite titanate. In situ formation of A-site-deficient hydrated CaTiO3 accompanied with Ni exsolution solids leads to ∼78 and 65% of CH4 and CO2 conversion, respectively, suppressing carbon formations and alkaline-earth metal segregations in combined steam and carbon dioxide reforming of methane at 700 °C. It would help to design active and stable metal-perovskite catalysts for energy and environmental applications.
Collapse
Affiliation(s)
- Jin Goo Lee
- Advanced Energy Materials and Components R&D Group, Dongnam Division, Korea Institute of Industrial Technology, 33-1, Jungang-ro, Yangsan, Geongsangnam-do 50623, Republic of Korea
| |
Collapse
|
6
|
Zhu Z, Xuan Y, Liu X, Zhu Q. Revealing the stochastic kinetics evolution of photocatalytic CO 2 reduction. NANOSCALE 2023; 15:730-741. [PMID: 36520137 DOI: 10.1039/d2nr05413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Investigating kinetic mechanisms to design efficient photocatalysts is critical for improving photocatalytic CO2 reduction, but the stochastic photo-physical/chemical properties of kinetics remain unclear. Herein, we propose a statistical study to discuss the stochastic feature evolution of photocatalytic systems. The uncertainties of light absorption, charge carrier migration, and surface reaction are described by nonparametric estimation methods in the proposed model, which includes the effect of operational and material parameters. The density distribution of surface electrons shifts from a skewed distribution to an approximate uniform distribution as incident photon density increases. The system temperature rising induces the rate-determining step of surface reactions to change from charge carrier kinetics to reactant activation processes. Benefiting from the synergistic optimization between the operational parameter and active site density, the electron-capturing probability of active sites is boosted from 0.06 to 0.17. The modified reaction kinetic equation is constructed based on the distribution function of charge carrier kinetics. Furthermore, the experimental photoactivity results are consistent with the statistical analysis, which proves the feasibility of the established model. The characterization tests show that the gap between testing activities and theoretical efficiency is caused by a mismatch between charge carrier supply and mass transfer. Our work unveils the stochastic features in photocatalytic CO2 reduction, offering a comprehensive analytical framework for photocatalytic system optimization.
Collapse
Affiliation(s)
- Zhonghui Zhu
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Yimin Xuan
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- Integrated Energy Research Institute, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xianglei Liu
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- Integrated Energy Research Institute, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qibin Zhu
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- Integrated Energy Research Institute, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
7
|
Alkanolamine intercalation assisted liquid phase exfoliation of titanium carbide MXene nanosheets for highly efficient photocatalytic CO2 reduction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|