1
|
Gobet A, Moissonnier L, Zarkadas E, Magnard S, Bettler E, Martin J, Terreux R, Schoehn G, Orelle C, Jault JM, Falson P, Chaptal V. Rhodamine6G and Hœchst33342 narrow BmrA conformational spectrum for a more efficient use of ATP. Nat Commun 2025; 16:1745. [PMID: 39966360 PMCID: PMC11836358 DOI: 10.1038/s41467-025-56849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Multidrug ABC transporters harness the energy of ATP binding and hydrolysis to translocate substrates out of the cell and detoxify them. While this involves a well-accepted alternating access mechanism, molecular details of this interplay are still elusive. Rhodamine6G binding on a catalytic inactive mutant of the homodimeric multidrug ABC transporter BmrA triggers a cooperative binding of ATP on the two identical nucleotide-binding-sites, otherwise michaelian. Here, we investigate this asymmetric behavior via a structural-enzymology approach, solving cryoEM structures of BmrA at defined ATP ratios, highlighting the plasticity of BmrA as it undergoes the transition from inward to outward facing conformations. Analysis of continuous heterogeneity within cryoEM data and structural dynamics, reveals that Rhodamine6G narrows the conformational spectrum explored by the nucleotide-binding domains. We observe the same behavior for the other drug Hœchst33342. Following on these findings, the effect of drug-binding showed an ATPase stimulation and a maximal transport activity of the wild-type protein at the concentration-range where the cooperative transition occurs. Altogether, these findings provide a description of the influence of drug binding on the ATP-binding sites through a change in conformational dynamics.
Collapse
Affiliation(s)
- A Gobet
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus C, Denmark
| | - L Moissonnier
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France
| | - E Zarkadas
- Université Grenoble Alpes, CNRS, CEA, EMBL, ISBG, Grenoble, France
| | - S Magnard
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France
| | - E Bettler
- ECMO team, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305 CNRS University Lyon-1, 7 passage du Vercors, Lyon, France
| | - J Martin
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - R Terreux
- ECMO team, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305 CNRS University Lyon-1, 7 passage du Vercors, Lyon, France
| | - G Schoehn
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - C Orelle
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France
| | - J M Jault
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France
| | - P Falson
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France.
| | - V Chaptal
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France.
| |
Collapse
|
2
|
Osten V, Oepen K, Schneider D. The C-terminal α-helix is crucial for the activity of the bacterial ABC transporter BmrA. J Biol Chem 2025; 301:108098. [PMID: 39706270 PMCID: PMC11774805 DOI: 10.1016/j.jbc.2024.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
ABC transporters are membrane integral proteins that consist of a transmembrane domain and nucleotide-binding domain (NBD). Two monomers (half-transporters) of the Bacillus subtilis ABC transporter Bacillus multidrug-resistance ATP (BmrA) dimerize to build a functional full-transporter. As all ABC exporters, BmrA uses the free energy of ATP hydrolysis to transport substrate molecules across the cell membrane. For substrate transport, a BmrA dimer undergoes major conformational changes. ATP binding drives dimerization of the NBDs followed by the hydrolysis of the nucleotides. Conserved structural elements within the NBD and transmembrane domain are crucial for dimerization and the activity of BmrA. In the BmrA structure, an α-helix is present at the C-terminus, which can be subdivided in two smaller helices. As shown here, the very C-terminal helix (fragment) is not crucial for the BmrA activity. In fact, based on Cys-scanning mutagenesis, this region is highly flexible. In contrast, a BmrA variant lacking the entire C-terminal α-helix, showed no ATPase and transport activity. Via Ala-scanning, we identified residues in the N-terminal fragment of the helix that are crucial for the BmrA activity, most likely via establishing contacts to structural elements involved in ATP recognition, binding, and/or hydrolysis.
Collapse
Affiliation(s)
- Veronika Osten
- Department of Chemistry - Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Kristin Oepen
- Department of Chemistry - Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry - Biochemistry, Johannes Gutenberg-University, Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
3
|
Szántó JK, Dietschreit JCB, Shein M, Schütz AK, Ochsenfeld C. Systematic QM/MM Study for Predicting 31P NMR Chemical Shifts of Adenosine Nucleotides in Solution and Stages of ATP Hydrolysis in a Protein Environment. J Chem Theory Comput 2024; 20:2433-2444. [PMID: 38497488 DOI: 10.1021/acs.jctc.3c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
NMR (nuclear magnetic resonance) spectroscopy allows for important atomistic insights into the structure and dynamics of biological macromolecules; however, reliable assignments of experimental spectra are often difficult. Herein, quantum mechanical/molecular mechanical (QM/MM) calculations can provide crucial support. A major problem for the simulations is that experimental NMR signals are time-averaged over much longer time scales, and since computed chemical shifts are highly sensitive to local changes in the electronic and structural environment, sufficiently large averages over representative structural ensembles are essential. This entails high computational demands for reliable simulations. For NMR measurements in biological systems, a nucleus of major interest is 31P since it is both highly present (e.g., in nucleic acids) and easily observable. The focus of our present study is to develop a robust and computationally cost-efficient framework for simulating 31P NMR chemical shifts of nucleotides. We apply this scheme to study the different stages of the ATP hydrolysis reaction catalyzed by p97. Our methodology is based on MM molecular dynamics (MM-MD) sampling, followed by QM/MM structure optimizations and NMR calculations. Overall, our study is one of the most comprehensive QM-based 31P studies in a protein environment and the first to provide computed NMR chemical shifts for multiple nucleotide states in a protein environment. This study sheds light on a process that is challenging to probe experimentally and aims to bridge the gap between measured and calculated NMR spectroscopic properties.
Collapse
Affiliation(s)
- Judit Katalin Szántó
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Johannes C B Dietschreit
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mikhail Shein
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 München, Germany
| | - Anne K Schütz
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
4
|
Novischi SYP, Karoly-Lakatos A, Chok K, Bonifer C, Becker-Baldus J, Glaubitz C. Probing the allosteric NBD-TMD crosstalk in the ABC transporter MsbA by solid-state NMR. Commun Biol 2024; 7:43. [PMID: 38182790 PMCID: PMC10770068 DOI: 10.1038/s42003-023-05617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
The ABC transporter MsbA plays a critical role in Gram-negative bacteria in the regulation of the outer membrane by translocating core-LPS across the inner membrane. Additionally, a broad substrate specificity for lipophilic drugs has been shown. The allosteric interplay between substrate binding in the transmembrane domains and ATP binding and turnover in the nucleotide-binding domains must be mediated via the NBD/TMD interface. Previous studies suggested the involvement of two intracellular loops called coupling helix 1 and 2 (CH1, CH2). Here, we demonstrate by solid-state NMR spectroscopy that substantial chemical shift changes within both CH1 and CH2 occur upon substrate binding, in the ATP hydrolysis transition state, and upon inhibitor binding. CH2 is domain-swapped within the MsbA structure, and it is noteworthy that substrate binding induces a larger response in CH2 compared to CH1. Our data demonstrate that CH1 and CH2 undergo structural changes as part of the TMD-NBD cross-talk.
Collapse
Affiliation(s)
- S Y Phoebe Novischi
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Andrea Karoly-Lakatos
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Kerby Chok
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Christian Bonifer
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
5
|
Di Cesare M, Kaplan E, Rendon J, Gerbaud G, Valimehr S, Gobet A, Ngo TAT, Chaptal V, Falson P, Martinho M, Dorlet P, Hanssen E, Jault JM, Orelle C. The transport activity of the multidrug ABC transporter BmrA does not require a wide separation of the nucleotide-binding domains. J Biol Chem 2024; 300:105546. [PMID: 38072053 PMCID: PMC10821409 DOI: 10.1016/j.jbc.2023.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins responsible for the translocation of a wide diversity of substrates across biological membranes. Some of them confer multidrug or antimicrobial resistance to cancer cells and pathogenic microorganisms, respectively. Despite a wealth of structural data gained in the last two decades, the molecular mechanism of these multidrug efflux pumps remains elusive, including the extent of separation between the two nucleotide-binding domains (NBDs) during the transport cycle. Based on recent outward-facing structures of BmrA, a homodimeric multidrug ABC transporter from Bacillus subtilis, we introduced a cysteine mutation near the C-terminal end of the NBDs to analyze the impact of disulfide-bond formation on BmrA function. Interestingly, the presence of the disulfide bond between the NBDs did not prevent the ATPase, nor did it affect the transport of Hoechst 33342 and doxorubicin. Yet, the 7-amino-actinomycin D was less efficiently transported, suggesting that a further opening of the transporter might improve its ability to translocate this larger compound. We solved by cryo-EM the apo structures of the cross-linked mutant and the WT protein. Both structures are highly similar, showing an intermediate opening between their NBDs while their C-terminal extremities remain in close proximity. Distance measurements obtained by electron paramagnetic resonance spectroscopy support the intermediate opening found in these 3D structures. Overall, our data suggest that the NBDs of BmrA function with a tweezers-like mechanism distinct from the related lipid A exporter MsbA.
Collapse
Affiliation(s)
- Margot Di Cesare
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Elise Kaplan
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Julia Rendon
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France
| | | | - Sepideh Valimehr
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Alexia Gobet
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Thu-Anh Thi Ngo
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Vincent Chaptal
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Pierre Falson
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | | | - Pierre Dorlet
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France
| | - Eric Hanssen
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Jean-Michel Jault
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France.
| | - Cédric Orelle
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France.
| |
Collapse
|
6
|
Middleton DA, Griffin J, Esmann M, Fedosova NU. Solid-state NMR chemical shift analysis for determining the conformation of ATP bound to Na,K-ATPase in its native membrane. RSC Adv 2023; 13:34836-34846. [PMID: 38035247 PMCID: PMC10685339 DOI: 10.1039/d3ra06236h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The 13C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3'-endo (N) conformation when bound with high affinity to NKA in the E1Na state, in contrast to the C2'-endo (S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H-C-C-H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand-protein interactions.
Collapse
Affiliation(s)
- David A Middleton
- Department of Chemistry, Lancaster University Bailrigg Lancaster LA1 4YB UK +44 (0)1524 594328
| | - John Griffin
- Department of Chemistry, Lancaster University Bailrigg Lancaster LA1 4YB UK +44 (0)1524 594328
| | - Mikael Esmann
- Department of Biomedicine, Aarhus University Aarhus Denmark
| | | |
Collapse
|
7
|
Zhang J, Song D, Schackert FK, Li J, Xiang S, Tian C, Gong W, Carloni P, Alfonso-Prieto M, Shi C. Fluoride permeation mechanism of the Fluc channel in liposomes revealed by solid-state NMR. SCIENCE ADVANCES 2023; 9:eadg9709. [PMID: 37611110 PMCID: PMC10446490 DOI: 10.1126/sciadv.adg9709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) methods can probe the motions of membrane proteins in liposomes at the atomic level and propel the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. In this work, we report our study on the fluoride channel Fluc-Ec1 in phospholipid bilayers based on ssNMR and molecular dynamics simulations. Previously unidentified fluoride binding sites in the aqueous vestibules were experimentally verified by 19F-detected ssNMR. One of the two fluoride binding sites in the polar track was identified as a water molecule by 1H-detected ssNMR. Meanwhile, a dynamic hotspot at loop 1 was observed by comparing the spectra of wild-type Fluc-Ec1 in variant buffer conditions or with its mutants. Therefore, we propose that fluoride conduction in the Fluc channel occurs via a "water-mediated knock-on" permeation mechanism and that loop 1 is a key molecular determinant for channel gating.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Dan Song
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Florian Karl Schackert
- Institute for Advanced Simulations (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Juan Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Shengqi Xiang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Changlin Tian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Weimin Gong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Paolo Carloni
- Institute for Advanced Simulations (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulations (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Chaowei Shi
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| |
Collapse
|
8
|
Blümich B, Parziale M, Augustine M. Asymmetry in three-site relaxation exchange NMR. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:217-229. [PMID: 37904857 PMCID: PMC10539757 DOI: 10.5194/mr-4-217-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/23/2023] [Indexed: 11/01/2023]
Abstract
The asymmetry of peak integrals in 2D relaxation maps of exchange between three sites indicates circular flow between the relaxation sites. This disagrees with the detailed balance according to which the exchange between any pair of sites must be balanced in terms of thermodynamic equilibrium. Confined diffusion of particles jumping randomly on a 2D checkerboard grid to any of their eight neighbor positions and confined gas diffusion were modeled in Monte Carlo simulations to explore the impact of topological constraints on particle exchange between three pools. Both models produce density variations across the pore and reveal that up to 1 % of the molecules move in circular paths between the relaxation pools. This motion is driven by different features of either algorithm. It is silent in terms of thermodynamic equilibrium, confirming that multi-site exchange maps are symmetric in this case. The coherent flux is argued to result from stochastic pore resonance related to diffusion eigenmodes. If it can be driven experimentally by external time-varying electric, magnetic, or ultrasonic fields, this may be a way to enhance heterogeneous catalysis.
Collapse
Affiliation(s)
- Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen
University, Worringer Weg 2, 52074 Aachen, Germany
| | - Matthew Parziale
- Department of Chemistry, UC Davis, One Shields Avenue, Davis, CA
95616, USA
| | - Matthew Augustine
- Department of Chemistry, UC Davis, One Shields Avenue, Davis, CA
95616, USA
| |
Collapse
|
9
|
Suzuki S, Kumagai S, Nagashima T, Yamazaki T, Okitsu T, Wada A, Naito A, Katayama K, Inoue K, Kandori H, Kawamura I. Characterization of retinal chromophore and protonated Schiff base in Thermoplasmatales archaeon heliorhodopsin using solid-state NMR spectroscopy. Biophys Chem 2023; 296:106991. [PMID: 36905840 DOI: 10.1016/j.bpc.2023.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Heliorhodopsin (HeR) is a seven-helical transmembrane protein with a retinal chromophore that corresponds to a new rhodopsin family. HeR from the archaebacterium Thermoplasmatales archaeon (TaHeR) exhibits unique features, such as the inverted protein orientation in the membrane compared to other rhodopsins and a long photocycle. Here, we used solid-state nuclear magnetic resonance (NMR) spectroscopy to investigate the 13C and 15N NMR signals of the retinal chromophore and protonated Schiff base (RPSB) in TaHeR embedded in POPE/POPG membrane. Although the 14- and 20-13C retinal signals indicated 13-trans/15-anti (all-trans) configurations, the 20-13C chemical shift value was different from that of other microbial rhodopsins, indicating weakly steric hinderance between Phe203 and the C20 methyl group. 15N RPSB/λmax plot deviated from the linear correlation based on retinylidene-halide model compounds. Furthermore, 15N chemical shift anisotropy (CSA) suggested that Ser112 and Ser234 polar residues distinguish the electronic environment tendencies of RPSB from those of other microbial rhodopsins. Our NMR results revealed that the retinal chromophore and the RPSB in TaHeR exhibit unique electronic environments.
Collapse
Affiliation(s)
- Shibuki Suzuki
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Sari Kumagai
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Toshio Nagashima
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Toshio Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Takashi Okitsu
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akira Naito
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
10
|
Orelle C, Schmitt L, Jault JM. Waste or die: The price to pay to stay alive. Trends Microbiol 2023; 31:233-241. [PMID: 36192292 DOI: 10.1016/j.tim.2022.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
Microorganisms need to constantly exchange with their habitat to capture nutrients and expel toxic compounds. The ATP-binding cassette (ABC) transporters, a family of membrane proteins especially abundant in microorganisms, are at the core of these processes. Due to their extraordinary ability to expel structurally unrelated compounds, some transporters play a protective role in different organisms. Yet, the downside of these multidrug transporters is their entanglement in the resistance to therapeutic treatments. Intriguingly, some multidrug ABC transporters show a high level of ATPase activity, even in the absence of transported substrates. Although this basal ATPase activity might seem a waste, we surmise that this inherent capacity allows multidrug transporters to promptly translocate any bound drug before it penetrates into the cell.
Collapse
Affiliation(s)
- Cédric Orelle
- University of Lyon, CNRS, UMR5086 'Molecular Microbiology and Structural Biochemistry', IBCP, 7 Passage du Vercors, F-69367, Lyon, France.
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | - Jean-Michel Jault
- University of Lyon, CNRS, UMR5086 'Molecular Microbiology and Structural Biochemistry', IBCP, 7 Passage du Vercors, F-69367, Lyon, France.
| |
Collapse
|
11
|
Duma L, Senicourt L, Rigaud B, Papadopoulos V, Lacapère JJ. Solid-state NMR study of structural heterogeneity of the apo WT mouse TSPO reconstituted in liposomes. Biochimie 2023; 205:73-85. [PMID: 36029902 DOI: 10.1016/j.biochi.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
In the last decades, ligand binding to human TSPO has been largely used in clinical neuroimaging, but little is known about the interaction mechanism. Protein conformational mobility plays a key role in the ligand recognition and both, ligand-free and ligand-bound structures, are mandatory for characterizing the molecular binding mechanism. In the absence of crystals for mammalian TSPO, we have exploited solid-state nuclear magnetic resonance (ssNMR) spectroscopy under magic-angle spinning (MAS) to study the apo form of recombinant mouse TSPO (mTSPO) reconstituted in lipids. This environment has been previously described to permit binding of its high-affinity drug ligand PK11195 and appears therefore favourable for the study of molecular dynamics. We have optimized the physical conditions to get the best resolution for MAS ssNMR spectra of the ligand-free mTSPO. We have compared and combined various ssNMR spectra to get dynamical information either for the lipids or for the mTSPO. Partial assignment of residue types suggests few agreements with the published solution NMR assignment of the PK11195-bound mTSPO in DPC detergent. Moreover, we were able to observe some lateral chains of aromatic residues that were not assigned in solution. 13C double-quantum NMR spectroscopy shows remarkable dynamics for ligand-free mTSPO in lipids which may have significant implications on the recognition of the ligand and/or other protein partners.
Collapse
Affiliation(s)
- Luminita Duma
- Champagne-Ardenne University, CNRS, ICMR UMR, 7312, Reims, France.
| | - Lucile Senicourt
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005, Paris, France
| | - Baptiste Rigaud
- CNRS Institut des Matériaux de Paris Centre (FR2482), 4 Place Jussieu, 75005, Paris, France
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jean-Jacques Lacapère
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005, Paris, France
| |
Collapse
|
12
|
Jones PM, George AM. The Switch and Reciprocating Models for the Function of ABC Multidrug Exporters: Perspectives on Recent Research. Int J Mol Sci 2023; 24:ijms24032624. [PMID: 36768947 PMCID: PMC9917156 DOI: 10.3390/ijms24032624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
ATP-binding cassette (ABC) transporters comprise a large superfamily of primary active transporters, which are integral membrane proteins that couple energy to the uphill vectorial transport of substrates across cellular membranes, with concomitant hydrolysis of ATP. ABC transporters are found in all living organisms, coordinating mostly import in prokaryotes and export in eukaryotes. Unlike the highly conserved nucleotide binding domains (NBDs), sequence conservation in the transmembrane domains (TMDs) is low, with their divergent nature likely reflecting a need to accommodate a wide range of substrate types in terms of mass and polarity. An explosion in high resolution structural analysis over the past decade and a half has produced a wealth of structural information for ABCs. Based on the structures, a general mechanism for ABC transporters has been proposed, known as the Switch or Alternating Access Model, which holds that the NBDs are widely separated, with the TMDs and NBDs together forming an intracellular-facing inverted "V" shape. Binding of two ATPs and the substrate to the inward-facing conformation induces a transition to an outward conformation. Despite this apparent progress, certainty around the transport mechanism for any given ABC remains elusive. How substrate binding and transport is coupled to ATP binding and hydrolysis is not known, and there is a large body of biochemical and biophysical data that is at odds with the widely separated NBDs being a functional physiological state. An alternative Constant Contact model has been proposed in which the two NBSs operate 180 degrees out of phase with respect to ATP hydrolysis, with the NBDs remaining in close proximity throughout the transport cycle and operating in an asymmetric allosteric manner. The two models are discussed in the light of recent nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry analyses of three ABC exporters.
Collapse
|