1
|
Li X, Bie J, Wang Q, Li K, Lv Y, Lin X, Chen S, Sun Z, Liu X, Luo J. Two-Dimensional Layered Germanium Iodide Perovskite Ferroelectric Semiconductors. Angew Chem Int Ed Engl 2025; 64:e202424058. [PMID: 39833994 DOI: 10.1002/anie.202424058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
The discovery of ferroelectricity in two-dimensional (2D) semiconductors has opened a new and exciting chapter in next-generation electronics and spintronics due to their lattice-dimensionality-induced unique behaviors and fascinating functionalities brought by spontaneous polarization. The emerging layered halide perovskites with 2D lattices provide a great platform for generating reduced symmetry and low-dimensional ferroelectricity. Herein, inspired by the approach of reduced lattice dimensionality, a series of 2D layered germanium iodide perovskite ferroelectric semiconductors A2CsGe2I7 [where A=PA (propylammonium), BA (butylammonium) and AA (amylammonium)] was firstly developed, which demonstrates remarkable semiconducting features including narrow direct band gap (~1.8 eV) and high conductivity over 32.23 nS/cm. Emphatically, these layered germanium iodide perovskites manifest large in-plane ferroelectric polarization over ~10.0 μC/cm2, mainly attributed to the large off-centering ion displacement induced by stereo-active lone-pairs of Ge2+. More specifically, in contrast to three-dimensional ferroelectric CsGeI3, the representative 2D layered BA2CsGe2I7 manifests a superior polarization-sensitive bulk photovoltaic effect with a polarization ratio of 1.68 and high short circuit current density up to 81.25 μA/cm2, which is superior to those of reported layered halide perovskite ferroelectrics. This work provides an exciting pathway for the development of 2D ferroelectric semiconductors as well as sheds light on their further applications in photoelectronic fields.
Collapse
Affiliation(s)
- Xiaoqi Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Jie Bie
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Jiangsu, 210023, P. R. China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Jiangsu, 210093, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Qianxi Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Kai Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yicong Lv
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiantan Lin
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shuang Chen
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Jiangsu, 210023, P. R. China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Jiangsu, 210093, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Yang X, Zhou B, Guo M, Liu Y, Cong R, Li L, Wu W, Wang S, Guo L, Pan C, Yang Z. 2D Perovskite Heterojunction-Based Self-Powered Polarized Photodetectors with Controllable Polarization Ratio Enabled by Ferro-Pyro-Phototronic Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414422. [PMID: 39840430 PMCID: PMC11923868 DOI: 10.1002/advs.202414422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Indexed: 01/23/2025]
Abstract
Metal halide perovskites (MHPs) are commonly used in polarization-sensitive photodetectors (PDs) for applications such as polarization imaging, remote sensing, and optical communication. Although various methods exist to adjust the polarization-sensitive photocurrent, a universal and effective approach for continuous control of MHPs' optoelectronic and polarized properties is lacking. A universal strategy to electrically modulate the polarization ratio (PR) of self-powered polarized PDs using the ferro-pyro-phototronic effect (FPPE) in 2D perovskites is presented. By varying the amplitude and direction of ferroelectric polarization voltage, the built-in electric field in the heterojunction can be modulated, allowing for controllable PR regulation and adjustable polarization characteristics. Moreover, the polarized pyroelectric photoresponses are realized, significantly enhancing the responsivity, response speed of the polarized PDs. Both the pyroelectric currents and photocurrents exhibit obvious polarization characteristics. This method's versatility is demonstrated by creating three additional quasi-2D MHP ferroelectric-based polarized-sensitive PDs. A proof-of-concept for encrypted optical communication is achieved using the UV-sensitive PDs as light-sensing units. These findings highlight FPPE's potential to enhance ferroelectric device polarization control, enabling high-performance and self-powered polarization photodetection.
Collapse
Affiliation(s)
- Xiaoran Yang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Binyi Zhou
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Meitong Guo
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Yao Liu
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Ridong Cong
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Leipeng Li
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Wenqiang Wu
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, P. R. China
| | - Shufang Wang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Linjuan Guo
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Caofeng Pan
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, P. R. China
| | - Zheng Yang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
3
|
Chen Q, Ge M, Geng C, Zhang J, Gao L, Huang Z, Wang S, Feng Y, Yue X, Qaid SMH, Fu X, Wang M, Jiang Y, Yuan M. Manipulating perovskite structural asymmetry for high-performing self-powered full-stokes polarimetry. SCIENCE ADVANCES 2025; 11:eads6123. [PMID: 40020053 PMCID: PMC11870067 DOI: 10.1126/sciadv.ads6123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
Developing direct full-stokes imaging polarimetry is essential for various applications but remains challenging. Perovskites have superior optoelectronic properties and structural diversity, making them ideal candidates for high-performing direct full-stokes polarimetry. However, perovskite suffers low chiroptical activity due to inefficient chiral transfer, which greatly limits its circular-polarization-vector discrimination. These issues urgently require remedy. Here, we demonstrate that perovskites' chiroptical activity is highly related to their structural chiral-distortion extent. We propose using halide mixing to construct asymmetric chiral transfer to heighten its structural chiral-distortion extent. Accordingly, we report a 16-fold increment in the optical chiroptical activity. Further ab initio calculations verify that the enhancement is due to the strengthened magnetic transition dipole in mixed-halide structures. We herein report a self-powered, direct full-Stokes polarimetry with a high detectivity up to 1.2 × 1012 Jones and low detection errors (ΔS1-3 ≤ 5.0%). We further showcase their application in full-stokes imaging polarimetry with the lowest detection errors yet.
Collapse
Affiliation(s)
- Quanlin Chen
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- College of New Energy and Materials, Ningde Normal University, Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde 352100, P. R. China
| | - Mingwei Ge
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | - Cong Geng
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jia Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Linyue Gao
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhuanzhuan Huang
- Ultrafast Electron Microscopy Laboratory, MOE Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300071, P. R. China
| | - Saike Wang
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yanxing Feng
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xinxin Yue
- Ultrafast Electron Microscopy Laboratory, MOE Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300071, P. R. China
| | - Saif M. H. Qaid
- Department of Physics & Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xuewen Fu
- Ultrafast Electron Microscopy Laboratory, MOE Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300071, P. R. China
| | - Mei Wang
- School of Materials Science and Engineering, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yuanzhi Jiang
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Mingjian Yuan
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
4
|
Wang Z, Han W, Fu B, Kang H, Cheng P, Guan J, Zheng Y, Shi R, Xu J, Bu XH. Mechanical Twisting-Induced Enhancement of Second-Order Optical Nonlinearity in a Flexible Molecular Crystal. J Am Chem Soc 2025; 147:2766-2775. [PMID: 39772554 DOI: 10.1021/jacs.4c15519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics. The crystal formed through the self-assembly of the model compound 9-anthraldehyde (AA) features an intrinsic chiral and noncentrosymmetric structure, demonstrating high efficiency second harmonic generation (SHG) and NLO circular dichroism, which could be greatly enhanced by macroscopic mechanical twisting. The anisotropic molecular stacking imparts the AA crystal with mechanical flexibility of combined elastic bending and plastic twisting. The isochiral mechanical twisting could greatly enhance the SHG intensities by an order of magnitude depending on their M- or P-configuration. Meanwhile, the SHG circular dichroism factor gSHG-CD of the isochiral twisted crystal is greatly increased, achieving the highest reported NLO anisotropy factor among organic NLO materials. These boosted NLO performances of SHG intensity and nonlinear chiroptical response are expected to greatly expand the photonic applications of flexible molecular crystals.
Collapse
Affiliation(s)
- Zhihua Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Bona Fu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Hanwen Kang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Junjie Guan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Rongchao Shi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd. Yanshan Branch, Fenghuangting Road 15, Beijing 102500, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| |
Collapse
|
5
|
Chen X, Xu H, Li W, Luo J, Sun Z. Halogen Substitution Strategy for Exploiting High-Performance Molecular Ferroelectrics. Chemphyschem 2025; 26:e202400801. [PMID: 39411953 DOI: 10.1002/cphc.202400801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Indexed: 11/16/2024]
Abstract
Molecular ferroelectrics are emerging as a robust family of electric-ordered materials due to their distinct structural flexibility, molecular tunability, and versatility. In recent years, diverse chemical design approaches have significantly contributed to discovering and optimizing ferroelectric performances of molecule-based ferroelectric systems. Notably, halogen substitution is one of the most effective strategies for inducing symmetry breaking and optimizing the dipole moments and potential energy barriers. In this minireview, we have summarized recent significant advances of halogen substitution strategy in molecule-based ferroelectrics, including organic-inorganic hybrids and metal-free molecular systems. Subsequently, we discuss the underlying mechanism of halogen substitution to improve ferroelectric performances, including the generation of spontaneous polarization, enhancement of Curie temperature, and bandgap engineering. Finally, the future directions in designing and modulating molecular ferroelectrics by halogen substitution strategy are also highlighted.
Collapse
Affiliation(s)
- Xingguang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haojie Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Li Z, Sun A, Zheng Y, Zhuang R, Wu X, Tian C, Tang C, Liu Y, Ouyang B, Du J, Li Z, Cai J, Wu X, Chen J, Hua Y, Chen CC. Efficient Charge Transport in Inverted Perovskite Solar Cells via 2D/3D Ferroelectric Heterojunction. SMALL METHODS 2024; 8:e2400425. [PMID: 38593370 DOI: 10.1002/smtd.202400425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Indexed: 04/11/2024]
Abstract
While the 2D/3D heterojunction is an effective method to improve the power conversion efficiency (PCE) of perovskite solar cells (PSCs), carriers are often confined in the quantum wells (QWs) due to the unique structure of 2D perovskite, which makes the charge transport along the out-of-plane direction difficult. Here, a 2D/3D ferroelectric heterojunction formed by 4,4-difluoropiperidine hydrochloride (2FPD) in inverted PSCs is reported. The enriched 2D perovskite (2FPD)2PbI4 layer with n = 1 on the perovskite surface exhibits ferroelectric response and has oriented dipoles along the out-of-plane direction. The ferroelectricity of the oriented dipole layer facilitates the enhancement of the built-in electric field (1.06 V) and the delay of the cooling process of hot carriers, reflected in the high carrier temperature (above 1400 K) and the prolonged photobleach recovery time (139.85 fs, measured at bandgap), improving the out-of-plane conductivity. In addition, the alignment of energy levels is optimized and exciton binding energy (32.8 meV) is reduced by changing the dielectric environment of the surface. Finally, the 2FPD-treated PSCs achieve a PCE of 24.82% (certified: 24.38%) with the synergistic effect of ferroelectricity and defect passivation, while maintaining over 90% of their initial efficiency after 1000 h of maximum power point tracking.
Collapse
Affiliation(s)
- Zihao Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Anxin Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yiting Zheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Rongshan Zhuang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Xueyun Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Congcong Tian
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Chen Tang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Beilin Ouyang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jiajun Du
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Ziyi Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jingyu Cai
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Xiling Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jinling Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yong Hua
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| |
Collapse
|
7
|
Wang Y, Song MS, Zhao J, Li Z, Wang T, Wang H, Wang HY, Wang Y. Chiral Perovskite Heterostructure Films of CsPbBr 3 Quantum Dots and 2D Chiral Perovskite with Circularly Polarized Luminescence Performance and Energy Transfer. ACS NANO 2024; 18:22334-22343. [PMID: 39120711 DOI: 10.1021/acsnano.4c06631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This work reports the synthesis of chiral perovskite heterostructure films by combining a two-dimensional (2D) chiral (R-/S-MBA)2PbI4 perovskite with CsPbBr3 quantum dots (QDs). The as-synthesized chiral heterostructure films exhibit obvious circularly polarized luminescence (CPL) properties, even though pure 2D chiral perovskite cannot present photoluminescence. It indicates that the chirality of the excited state of the QDs originates from the 2D chiral perovskite. The circular polarization-resolved transient absorption (TA) spectra further demonstrate that the CPL response of heterostructure films originates from the energy transfer between the chiral perovskite layer and QDs layer and the suppression of spin relaxation, which induces the imbalance of the spin population of excited states in QDs layer. In addition, the photoluminescence (PL), circular dichroism (CD), and CPL spectra of these heterostructure films can be controlled by varying the thickness and component of the chiral perovskite layer, which demonstrates that the anion exchange between chiral perovskite and CsPbBr3 QDs can tune the chemical composition and optoelectronic properties due to the low bonding energy difference between them and decrease the strain within the QDs layer to reduce the radiative recombination lifetime. This work provides guidance for the synthesis of chiral perovskites with a strong CPL response and further provides insight into the origination of CPL.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Mu-Sen Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiaqi Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhen Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Tinglei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hai Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hai-Yu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
8
|
He WM, Zha J, Zhou Z, Cui YJ, Luo P, Ma L, Tan C, Zang SQ. Atomically Precise Chiral Metal Nanoclusters for Circularly Polarized Light Detection. Angew Chem Int Ed Engl 2024; 63:e202407887. [PMID: 38802322 DOI: 10.1002/anie.202407887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Circularly polarized light (CPL) detection is of great significance in various applications such as drug identification, sensing and imaging. Atomically precise chiral metal nanoclusters with intense circular dichroism (CD) signals are promising candidates for CPL detection, which can further facilitate device miniaturization and integration. Herein, we report the preparation of a pair of optically active chiral silver nanoclusters [Ag7(R/S-DMA)2(dpppy)3] (BF4)3 (R/S-Ag7) for direct CPL detection. The crystal structure and molecular formula of R/S-Ag7 clusters are confirmed by single-crystal X-ray diffraction and high-resolution mass spectrometry. R/S-Ag7 clusters exhibit strong CD spectra and CPL both in solution and solid states. When used as the photoactive materials in photodetectors, R/S-Ag7 enables effective discrimination between left-handed circularly polarized and right-handed circularly polarized light at 520 nm with short response time, high responsivity and considerable discrimination ratio. This study is the first report on using atomically precise chiral metal nanoclusters for CPL detection.
Collapse
Affiliation(s)
- Wei-Miao He
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiajia Zha
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 999077, P. R. China
| | - Zhan Zhou
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Yu-Jia Cui
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 999077, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Han XB. Coupled Kite-to-Square Distortion Transition and Physical Properties in 2D Lead Halide Perovskite. J Phys Chem Lett 2024:7979-7991. [PMID: 39078198 DOI: 10.1021/acs.jpclett.4c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
2D lead halide perovskites showcase diverse electrical and optoelectrical properties due to their adaptable structural distortion, which dictates the symmetry characteristics of the material. To accommodate the geometric shape of the cation, the inorganic layer of the 2D perovskite often undergoes specific distortions such as lead-halide bond length elongation/compression and lead atom displacement. The resultant distortion manifests as a quadrilateral shape formed by Pb atoms from four adjacent four octahedrons. The degree of distortion increases as the quadrilateral deviates further from a square shape and vice versa. This quadrilateral shape not only visually represents the magnitude of distortion but also confirms its direction. During the transition from kite to square distortion under external stimuli, the positions of the Pb atoms vividly illustrate the symmetry-breaking process, corresponding to a shift from high to low symmetry states. The electrical and optoelectronic properties, including ferroelectricity, pyroelectricity, piezoelectricity, nonlinear optical properties, and characteristics related to bulky photovoltaic effects, some of them exhibit direction dependence nature. This perspective employed a visible structural distortion approach to elucidate symmetry breaking and coupling distortion transitions with eight optoelectronic physical properties in 2D layered perovskite. We review recent research advancements and outline current challenges that help us to understand the structure-property relationship of 2D perovskite.
Collapse
Affiliation(s)
- Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
Sun C, Li Y, Yin J, Li D, Wu C, Zhang C, Fei H. Highly Stable MOF-Type Lead Halide Luminescent Ferroelectrics. Angew Chem Int Ed Engl 2024; 63:e202407102. [PMID: 38744673 DOI: 10.1002/anie.202407102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Lead halide molecular ferroelectrics represent an important class of luminescent ferroelectrics, distinguished by their high chemical and structural tunability, excellent processability and distinctive luminescent characteristics. However, their inherent instability, prone to decomposition upon exposure to moisture and light, hinders their broader ferroelectric applications. Herein, for the first time, we present a series of isoreticular metal-organic framework (MOF)-type lead halide luminescent ferroelectrics, demonstrating exceptional robustness under ambient conditions for at least 15 months and even when subjected to aqueous boiling conditions. Unlike conventional metal-oxo secondary building units (SBUs) in MOFs adopting highly centrosymmetric structure with limited structural distortion, our lead halide-based MOFs occupy structurally deformable [Pb2X]+ (X=Cl-/Br-/I-) SBUs that facilitate a c-axis-biased displacement of Pb2+ centers and substantially contribute to thermoinducible structural transformation. Importantly, this class of MOF-type lead halide ferroelectrics undergo ferroelectric-to-paraelectric phase transitions with remarkably high Curie temperature of up to 505 K, superior to most of molecular ferroelectrics. Moreover, the covalent bonding between phosphorescent organic component and the light-harvesting inorganic component achieves efficient spin-orbit coupling and intersystem crossing, resulting in long-lived afterglow emission. The compelling combination of high stability, ferroelectricity and afterglow emission exhibited by lead halide MOFs opens up many potential opportunities in energy-conversion applications.
Collapse
Affiliation(s)
- Chen Sun
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yukong Li
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Jinlin Yin
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Dongyang Li
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chao Wu
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chi Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
11
|
Simenas M, Gagor A, Banys J, Maczka M. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chem Rev 2024; 124:2281-2326. [PMID: 38421808 PMCID: PMC10941198 DOI: 10.1021/acs.chemrev.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX3 structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking. The goal of this review is to summarize the current state of knowledge on mixing effects on the structural phase transitions, crystal symmetry, cation and lattice dynamics, and phase diagrams of three- and low-dimensional lead halide perovskites. This review analyzes different mixing recipes and ingredients providing a comprehensive picture of mixing effects and their relation to the attractive properties of these materials.
Collapse
Affiliation(s)
- Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Anna Gagor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| | - Juras Banys
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Miroslaw Maczka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| |
Collapse
|
12
|
Zhu Z, Zhu T, You S, Yu P, Wu J, Zeng Y, Jiang Y, Liu X, Li L, Ji C, Luo J. Regulating Circularly Polarized Light Detection via Polar-Phase Transition in Alternating Chiral-Achiral Cations Intercalation-Type Hybrid Perovskites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307593. [PMID: 38151904 PMCID: PMC10853736 DOI: 10.1002/advs.202307593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Circularly polarized light (CPL) detection has wide applications in many fields, where the anisotropy factor (gIph ) is an important indicator to characterize the CPL detection performance. So far, many materials with high gIph have been reported, however, the exploration of the regulation of gIph is still in its infancy. Herein, two novel alternating chiral-achiral cations intercalation-type chiral hybrid perovskites (CHPs), named (R/S-1-phenylpropylamine)(propylamine)PbBr4 (1-R/S), exhibit above room-temperature (RT) polar-phase transition, which greatly regulates the gIph value. The gIph of 1-R is 0.04 in high-temperature phase chiral non-polar (P21 21 21 ) by applying 5 V bias, interestingly, with the temperature decrease, the gIph value in low-temperature phase chiral polar (P21 ) gradually increases (0.22@360K, 0.40@340K, 0.47@320K), and finally reaches a maximum of 0.5 at RT. Such value is not only the highest among 2D CHPs to date, but presents a 12.5-fold amplification compared with 0.04. Further, this rare phenomenon should be attributed to the built-in electric field induced by the polar photovoltaic effect, which sheds light on further obtaining CHPs with large gIph .
Collapse
Affiliation(s)
- Zeng‐Kui Zhu
- State Key Laboratory of Structure ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
- School of Chemistry and Chemical Engineering; Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330022China
| | - Tingting Zhu
- State Key Laboratory of Structure ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Shihai You
- State Key Laboratory of Structure ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Panpan Yu
- School of Chemistry and Chemical Engineering; Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330022China
| | - Jianbo Wu
- State Key Laboratory of Structure ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying Zeng
- School of Chemistry and Chemical Engineering; Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330022China
| | - Yuhang Jiang
- School of Chemistry and Chemical Engineering; Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330022China
| | - Xitao Liu
- State Key Laboratory of Structure ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
- University of Chinese Academy of SciencesBeijing100049China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhou350108China
| | - Lina Li
- State Key Laboratory of Structure ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
- University of Chinese Academy of SciencesBeijing100049China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhou350108China
| | - Chengmin Ji
- State Key Laboratory of Structure ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
- University of Chinese Academy of SciencesBeijing100049China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhou350108China
| | - Junhua Luo
- State Key Laboratory of Structure ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
- School of Chemistry and Chemical Engineering; Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330022China
- University of Chinese Academy of SciencesBeijing100049China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhou350108China
| |
Collapse
|
13
|
Möbs J, Klement P, Stuhrmann G, Gümbel L, Müller MJ, Chatterjee S, Heine J. Enhanced Circular Dichroism and Polarized Emission in an Achiral, Low Band Gap Bismuth Iodide Perovskite Derivative. J Am Chem Soc 2023; 145:23478-23487. [PMID: 37797198 DOI: 10.1021/jacs.3c06141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Lead halide perovskites and related main-group halogenido metalates offer unique semiconductor properties and diverse applications in photovoltaics, solid-state lighting, and photocatalysis. Recent advances in incorporating chiral organic cations have led to the emergence of chiral metal-halide semiconductors with intriguing properties, such as chiroptical activity and chirality-induced spin selectivity, enabling the generation and detection of circularly polarized light and spin-polarized electrons for applications in spintronics and quantum information. However, understanding the structural origin of chiroptical activity remains challenging due to macroscopic factors and experimental limitations. In this work, we present an achiral perovskite derivative [Cu2(pyz)3(MeCN)2][Bi3I11] (CuBiI; pyz = pyrazine; MeCN = acetonitrile), which exhibits remarkable circular dichroism (CD) attributed to the material's noncentrosymmetric nature. CuBiI features a unique structure as a poly-threaded iodido bismuthate, with [Bi3I11]2- chains threaded through a cationic two-dimensional coordination polymer. The material possesses a low, direct optical band gap of 1.70 eV. Notably, single crystals display both linear and circular optical activity with a large anisotropy factor of up to 0.16. Surprisingly, despite the absence of chiral building blocks, CuBiI exhibits a significant degree of circularly polarized photoluminescence, reaching 4.9%. This value is comparable to the results achieved by incorporating chiral organic molecules into perovskites, typically ranging from 3-10% at zero magnetic field. Our findings provide insights into the macroscopic origin of CD and offer design guidelines for the development of materials with high chiroptical activity.
Collapse
Affiliation(s)
- Jakob Möbs
- Department of Chemistry and Material Sciences Center, Philipps-Universität Marburg, Hans-Meerwein-Straße, Marburg D-35043, Germany
| | - Philip Klement
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Gina Stuhrmann
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Lukas Gümbel
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Marius J Müller
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Sangam Chatterjee
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Johanna Heine
- Department of Chemistry and Material Sciences Center, Philipps-Universität Marburg, Hans-Meerwein-Straße, Marburg D-35043, Germany
| |
Collapse
|
14
|
Noma T, Chen HY, Dhara B, Sotome M, Nomoto T, Arita R, Nakamura M, Miyajima D. Bulk Photovoltaic Effect Along the Nonpolar Axis in Organic-Inorganic Hybrid Perovskites. Angew Chem Int Ed Engl 2023; 62:e202309055. [PMID: 37635091 DOI: 10.1002/anie.202309055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
The origin of the bulk photovoltaic effect (BPVE) was considered as a built-in electric field formed by the macroscopic polarization of materials. Alternatively, the "shift current mechanism" has been gradually accepted as the more appropriate description of the BPVE. This mechanism implies that the photocurrent generated by the BPVE is a topological current featuring an ultrafast response and dissipation-less nature, which is very attractive for photodetector applications. Meanwhile, the origin of the BPVE in organic-inorganic hybrid perovskites (OIHPs) has not been discussed and is still widely accepted as the classical mechanism without any experimental evidence. Herein, we observed the BPVE along the nonpolar axis in OIHPs, which is inconsistent with the classical explanation. Furthermore, based on the nonlinear optical tensor correlation, we substantiated that the BPVE in OIHPs is originated in the shift current mechanism.
Collapse
Affiliation(s)
- Taishi Noma
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hsiao-Yi Chen
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Barun Dhara
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masato Sotome
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Takuya Nomoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Ryotaro Arita
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Masao Nakamura
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daigo Miyajima
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
15
|
Ma Y, Li W, Liu Y, Guo W, Xu H, Han S, Tang L, Fan Q, Luo J, Sun Z. Mixing cage cations in 2D metal-halide ferroelectrics enhances the ferro-pyro-phototronic effect for self-driven photopyroelectric detection. Chem Sci 2023; 14:10347-10352. [PMID: 37772112 PMCID: PMC10530782 DOI: 10.1039/d3sc02946h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
The ferro-pyro-phototronic (FPP) effect, coupling photoexcited pyroelectricity and photovoltaics, paves an effective way to modulate charge-carrier behavior of optoelectronic devices. However, reports of promising FPP-active systems remain quite scarce due to a lack of knowledge on the coupling mechanism. Here, we have successfully enhanced the FPP effect in a series of ferroelectrics, BA2Cs1-xMAxPb2Br7 (BA = butylammonium, MA = methylammonium, 0 ≤ x ≤ 0.34), rationally assembled by mixing cage cations into 2D metal-halide perovskites. Strikingly, chemical alloying of Cs+/MA+ cations leads to the reduction of exciton binding energy, as verified by the x = 0.34 component; this facilitates exciton dissociation into free charge-carriers and boosts photo-activities. The crystal detector thus displays enhanced FPP current at zero bias, almost more than 10 times higher than that of the x = 0 prototype. As an innovative study on the FPP effect, this work affords new insight into the fundamental principle of ferroelectrics and creates a new strategy for self-driven photodetection.
Collapse
Affiliation(s)
- Yu Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Wenjing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Yi Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Wuqian Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Haojie Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Shiguo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Liwei Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Qingshun Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
16
|
Aftab S, Shehzad MA, Salman Ajmal HM, Kabir F, Iqbal MZ, Al-Kahtani AA. Bulk Photovoltaic Effect in Two-Dimensional Distorted MoTe 2. ACS NANO 2023; 17:17884-17896. [PMID: 37656985 DOI: 10.1021/acsnano.3c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
In future solar cell technologies, the thermodynamic Shockley-Queisser limit for solar-to-current conversion in traditional p-n junctions could potentially be overcome with a bulk photovoltaic effect by creating an inversion broken symmetry in piezoelectric or ferroelectric materials. Here, we unveiled mechanical distortion-induced bulk photovoltaic behavior in a two-dimensional (2D) material, MoTe2, caused by the phase transition and broken inversion symmetry in MoTe2. The phase transition from single-crystalline semiconducting 2H-MoTe2 to semimetallic 1T'-MoTe2 was confirmed using X-ray photoelectron spectroscopy (XPS). We used a micrometer-scale system to measure the absorption of energy, which reduced from 800 to 63 meV during phase transformation from hexagonal to distorted octahedral and revealed a smaller bandgap semimetallic behavior. Experimentally, a large bulk photovoltaic response is anticipated with the maximum photovoltage VOC = 16 mV and a positive signal of the ISC = 60 μA (400 nm, 90.4 Wcm-2) in the absence of an external electric field. The maximum values of both R and EQE were found to be 98 mAW-1 and 30%, respectively. Our findings are distinctive features of the photocurrent responses caused by in-plane polarity and its potential from a wide pool of established TMD-based nanomaterials and a cutting-edge approach to optimize the efficiency in converting photons-to-electricity for power harvesting optoelectronics devices.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Muhammad Arslan Shehzad
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Hafiz Muhammad Salman Ajmal
- Department of Biomedical Engineering, Narowal Campus-University of Engineering and Technology, Lahore 54890, Pakistan
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Muhammad Zahir Iqbal
- Nanotechnology Research Laboratory, Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa 23640, Pakistan
| | - Abdullah A Al-Kahtani
- Chemistry Department, Collage of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Li X, Zhang F, Yue Z, Wang Q, Sun Z, Luo J, Liu X. Centimeter-Size Single Crystals of Halide Perovskite Photoferroelectric Solid Solution with Ultrahigh Pyroelectricity Boosted Photodetection. Angew Chem Int Ed Engl 2023; 62:e202305310. [PMID: 37486543 DOI: 10.1002/anie.202305310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
Photoferroelectrics, especially emerging halide perovskite ferroelectrics, have motivated tremendous interests owing to their fascinating bulk photovoltaic effect (BPVE) and cross-coupled functionalities. However, solid solutions of halide perovskite photoferroelectrics with controllable structure and enhanced performance are scarcely explored. Herein, through mixing cage cation, a homogeneous halide perovskite photoferroelectric PA2 FAx MA1-x Pb2 Br7 solid solution (PA, FA and MA are CH3 CH2 CH2 NH3 + , NH2 CHNH2 + and CH3 NH3 + , 0≤x≤1) has been developed, which demonstrates tunable Curie temperature in a wide range of 263-323 K and excellent optoelectrical features. As the component adjusted to x=0.7, the bulk crystal demonstrates ultrahigh pyroelectric coefficient up to 1.48 μC cm-2 K-1 around room temperature. Strikingly, benefiting from the light-induced pyroelectricity and remarkable BPVE, a self-powered and sensitive photodetector based solid solution crystals with boosted responsivity and detectivity over than 1300 % has been achieved. This pioneering work sheds light on the exploration of photoferroelectric solid solutions towards high-performance photoelectronic devices.
Collapse
Affiliation(s)
- Xiaoqi Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Fen Zhang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zengshan Yue
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qianxi Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Zheng W, Wang X, Zhang X, Chen B, Suo H, Xing Z, Wang Y, Wei HL, Chen J, Guo Y, Wang F. Emerging Halide Perovskite Ferroelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205410. [PMID: 36517207 DOI: 10.1002/adma.202205410] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/23/2022] [Indexed: 05/26/2023]
Abstract
Halide perovskites have gained tremendous attention in the past decade owing to their excellent properties in optoelectronics. Recently, a fascinating property, ferroelectricity, has been discovered in halide perovskites and quickly attracted widespread interest. Compared with traditional perovskite oxide ferroelectrics, halide perovskites display natural advantages such as structural softness, low weight, and easy processing, which are highly desirable in applications pursuing miniaturization and flexibility. This review focuses on the current research progress in halide perovskite ferroelectrics, encompassing the emerging materials systems and their potential applications in ferroelectric photovoltaics, self-powered photodetection, and X-ray detection. The main challenges and possible solutions in the future development of halide perovskite ferroelectric materials are also attempted to be pointed out.
Collapse
Affiliation(s)
- Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xiucai Wang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P. R. China
| | - Xin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Hao Suo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhifeng Xing
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yanze Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Han-Lin Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jiangkun Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yang Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
19
|
Liu Y, Xing P. Circularly Polarized Light Responsive Materials: Design Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300968. [PMID: 36934302 DOI: 10.1002/adma.202300968] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Circularly polarized light (CPL) with the end of optical vector traveling along circumferential trajectory shows left- and right-handedness, which transmits chiral information to materials via complicated CPL-matter interactions. Materials with circular dichroism respond to CPL illumination selectively with differential outputs that can be used to design novel photodetectors. Racemic or achiral compounds under CPL go through photodestruction, photoresolution, and asymmetric synthesis pathways to generate enantiomeric bias and optical activity. By this strategy, helical polymers and chiral inorganic plasmonic nanostructures are synthesized directly, and their intramolecular folding and subsequent self-assembly are photomodulable as well. In the aggregated state of self-assembly and liquid crystal phase, helical sense of the dynamic molecular packing is sensitive to enantiomeric bias brought by CPL, enabling the chiral amplification to supramolecular scale. In this review, the application-guided design strategies of CPL-responsive materials are aimed to be systematically summarized and discussed. Asymmetric synthesis, resolution, and property-modulation of small organic compounds, polymers, inorganic nanoparticles, supramolecular assemblies and liquid crystals are highlighted based on the important developments during the last decades. Besides, applications of light-matter interactions including CPL detection and biomedical applications are also referred.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
20
|
Ni HF, Ye LK, Zhuge PC, Hu BL, Lou JR, Su CY, Zhang ZX, Xie LY, Fu DW, Zhang Y. A nickel(ii)-based one-dimensional organic-inorganic halide perovskite ferroelectric with the highest Curie temperature. Chem Sci 2023; 14:1781-1786. [PMID: 36819861 PMCID: PMC9930933 DOI: 10.1039/d2sc05857j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Organic-inorganic halide perovskites (OIHPs) are very eye-catching due to their chemical tunability and rich physical properties such as ferroelectricity, magnetism, photovoltaic properties and photoluminescence. However, no nickel-based OIHP ferroelectrics have been reported so far. Here, we designed an ABX3 OIHP ferroelectric (3-pyrrolinium)NiCl3, where the 3-pyrrolinium cations are located on the voids surrounded by one-dimensional chains composed of NiCl6-face-sharing octahedra via hydrogen bonding interactions. Such a unique structure enables the (3-pyrrolinium)NiCl3 with a high spontaneous polarization (P s) of 5.8 μC cm-2 and a high Curie temperature (T c) of 428 K, realizing dramatic enhancement of 112 and 52 K compared to its isostructural (3-pyrrolinium)MCl3 (M = Cd, Mn). To our knowledge, remarkably, (3-pyrrolinium)NiCl3 should be the first case of nickel(ii)-based OIHP ferroelectric to date, and its T c of 428 K (35 K above that of BaTiO3) is the highest among all reported one-dimensional OIHP ferroelectrics. This work offers a new structural building block for enriching the family of OIHP structures and will inspire the further exploration of new nickel(ii)-based OIHP ferroelectrics.
Collapse
Affiliation(s)
- Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Lou-Kai Ye
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Peng-Cheng Zhuge
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Bo-Lan Hu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Jia-Rui Lou
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Chang-Yuan Su
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Zhi-Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| |
Collapse
|
21
|
Wang Z, Hao A, Xing P. Charge-Transfer Complex Doped Photothermal Hydrogels for Discriminating Circularly Polarized Near-Infrared Light. Angew Chem Int Ed Engl 2023; 62:e202214504. [PMID: 36347808 DOI: 10.1002/anie.202214504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/11/2022]
Abstract
Hydrogels behave as potential candidates to investigate circularly polarized light (CP)-matter interaction, which however suffer from small sensitivity towards circular polarization. Here we report a general protocol to build hydrogels from π-conjugated amino acids with coassembled charge-transfer (CT) complexes, covering a wide scope of donors and acceptors, which were incorporated into stable hydrogel matrices. CT complexes formed block coassemblies with gelators, induced the emergence of macroscopic chiral helices, where efficient chirality transfer occurs to realize tunable Cotton effects from visible light to NIR-I region depending on the structures of CT pairs. The hybrid hydrogels showed tunable photothermal performances with excellent heating-cooling cycling durability. Circularly polarized NIR light selectively triggered gel-solution phase transition at different timescales. Left- and right-CP illumination generates up to 2.5 folds difference in gel collapse time that allows for direct discrimination by naked eyes.
Collapse
Affiliation(s)
- Zhuoer Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|