1
|
Luo R, Xu D, Liu R, Zhou J, Ma X. Metal-organic frameworks for NH 3 adsorption and separation. NANOSCALE 2025. [PMID: 40383995 DOI: 10.1039/d5nr00651a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Ammonia (NH3) is not only an air pollutant but also a versatile and favourable chemical with widespread applications in human life. As a key component of nitrogen fertilizers, it plays a crucial role in improving crop yields. Additionally, NH3 serves as a hydrogen carrier and working fluid, contributing to the energy transition process. Given the diverse roles of NH3 and the varying requirements for adsorbents across different application scenarios, the rational design and selection of adsorbent materials are paramount. Metal-organic frameworks (MOFs) have emerged as promising adsorbent candidates due to their highly tunable structure and functionality, which can precisely match the characteristics required for NH3 adsorbents in multiple application scenarios. This review provides a comprehensive evaluation of NH3 adsorbents and delves into the stability characterization of MOFs under NH3 atmospheres and the underlying adsorption/degradation mechanisms. Additionally, we discuss the existing methods used to probe the host-guest interactions between MOFs and NH3. Finally, this study systematically summarizes the latest advancements of MOFs as NH3 adsorbents and classifies them according to the different requirements imposed by the varying roles of NH3. This review provides theoretical support for the design of more efficient NH3 adsorbents in the future.
Collapse
Affiliation(s)
- Rui Luo
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
| | - Dawei Xu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
| | - Ruirui Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
| | - Junwen Zhou
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
| | - Xiaojie Ma
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
| |
Collapse
|
2
|
Si GR, Kong XJ, He T, Zhao JT, Xie LH, Li JR. Ammonia Hydration in a Cu(II)-Pyrazolate Framework for Efficient Trace Capture. Angew Chem Int Ed Engl 2025:e202507356. [PMID: 40374580 DOI: 10.1002/anie.202507356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/15/2025] [Accepted: 05/15/2025] [Indexed: 05/17/2025]
Abstract
Ammonia (NH3) emissions from industrial and agricultural activities pose severe environmental and health issues. Trace NH3 capture typically relies on chemisorption at Lewis acid sites or physisorption on porous adsorbents but usually suffers from irreversible binding, energy-intensive regeneration, and structural degradation. In this work, for the first time, we demonstrate a new hydration pathway as a promising solution. In a Cu(II)-pyrazolate framework, BUT-64(H2O), the bridging water molecules between adjacent Cu(II) ions serve as Brønsted acid sites to hydrate ammonia, achieving a remarkable NH3 packing density of 0.27 g cm-3 at 0.1 kPa and an adsorption capacity of 1.51 mmol g-1 for 1000 ppm NH3 under 80% relative humidity, among the leading adsorbents. The reversible hydration mechanism combines enhanced NH3 affinity with facile regeneration and mitigated moisture co-adsorption, overcoming the inherent trade-off. The remarkable alkaline stability of this material also highlights its potential as an energy-efficient sorbent for trace NH3 capture.
Collapse
Affiliation(s)
- Guang-Rui Si
- State Key Laboratory of Materials Low-Carbon Recycling, Beijing University of Technology, Beijing, 100124, China
- Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Xiang-Jing Kong
- Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
| | - Tao He
- State Key Laboratory of Materials Low-Carbon Recycling, Beijing University of Technology, Beijing, 100124, China
- Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jia-Teng Zhao
- Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Lin-Hua Xie
- State Key Laboratory of Materials Low-Carbon Recycling, Beijing University of Technology, Beijing, 100124, China
- Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jian-Rong Li
- State Key Laboratory of Materials Low-Carbon Recycling, Beijing University of Technology, Beijing, 100124, China
- Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
3
|
Wu R, Wang N, Hao R, Hou YL, Fan Y, Sun W. Distinct off-on fluorescence signal from dual-response lanthanide metal-organic frameworks for ratiometric sensing of anthrax biomarker. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126196. [PMID: 40220684 DOI: 10.1016/j.saa.2025.126196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Bacillus anthrax is a highly dangerous zoonotic pathogen that represents a significant threat to public health. 2,6-Dipicolinic acid (DPA) is typically designated as the primary biomarker of Bacillus anthrax, which is a distinctive major component of anthrax spores. The development of sensitive, efficient, and rapid detection of this marker has significant implications for the elimination of potential threats and the safeguarding of public health and food safety. In this study, we have designed a dual lanthanide ion (Ce3+, Eu3+) functionalized metal-organic framework fluorescent probe, Ce@Eu@MOF-808, for the detection of the anthrax biomarker DPA via a dual-response turn-off-on mode. The antenna effect, resulting from a change in energy transfer efficiency upon excitation at 260 nm, caused Ce@Eu@MOF-808 to exhibit a single Ce3+ characteristic emission peak. Upon the addition of DPA, the intensity of the characteristic emission peak of Ce3+ exhibited a gradual decrease (turn-off), while the fluorescence peak of Eu3+ demonstrated a gradual increase (turn-on). This outcome enabled the establishment of a ratiometric fluorescence detection method for DPA. The developed fluorescence switching probe exhibited a broad linear range (5-30 μM), high sensitivity (limit of detection 0.67 μM), and was successfully employed for the detection of DPA in real samples. This strategy provides a rapid, sensitive, and reliable method for the detection of DPA during the early diagnosis of anthrax and provides a new avenue for the development of ratiometric fluorescent probes with multi-response lanthanide ions.
Collapse
Affiliation(s)
- Ran Wu
- College of Chemical Engineering, Salt Lake Chemical Engineering Research Complex, Qinghai Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining 810016, China
| | - Nan Wang
- College of Chemical Engineering, Salt Lake Chemical Engineering Research Complex, Qinghai Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining 810016, China
| | - Rusi Hao
- College of Chemical Engineering, Salt Lake Chemical Engineering Research Complex, Qinghai Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining 810016, China
| | - Yun-Lei Hou
- College of Chemical Engineering, Salt Lake Chemical Engineering Research Complex, Qinghai Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining 810016, China
| | - Youguo Fan
- College of Chemical Engineering, Salt Lake Chemical Engineering Research Complex, Qinghai Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining 810016, China
| | - Wenliang Sun
- College of Chemical Engineering, Salt Lake Chemical Engineering Research Complex, Qinghai Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining 810016, China.
| |
Collapse
|
4
|
Wu K, Li Q, Yue S, Bai X, Liu X, Zhao Z. Efficient hot carrier injection in plasmonic semiconductor heterojunction for artificial photosynthesis of ammonia. NANOTECHNOLOGY 2025; 36:185706. [PMID: 40164091 DOI: 10.1088/1361-6528/adc740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
We developed a plasmonic semiconductor p-n junction byin situgrowing p-type Cu3BiS3in n-type Bi2S3nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott-Schottky tests, x-ray photoelectron spectroscopy-based valence band spectra, and powder x-ray diffraction. Additionally, the rapid transfer of hot carriers between the heterojunctions was investigated using ultrafast transient absorption spectroscopy (TAS). The plasmonic p-n junction shows strong localized surface plasmon resonance (LSPR) absorption in the near-infrared (IR) range and delivers a 61-fold enhancement of the ammonia production rate under full spectrum irradiation in pure water. It can achieve an apparent quantum efficiency of 0.45% at 400 nm and 0.16% at 1000 nm.In situFourier-transform IR reveals that the plasmonic semiconductor heterojunction promotes the nitrogen chemisorption and activation. Based on TAS measurements, we found that LSPR induced hot carriers can be efficiently injected from plasmonic Cu3BiS3to non-plasmonic Bi2S3, with sufficient energy to drive water oxidation reaction. We further confirmed that photothermal effects have negligible contribution to the photocatalytic performance in the water-particle suspension system. The present study shows a potential strategy utilizing plasmonic semiconductors made of earth-abundant elements for green ammonia synthesis.
Collapse
Affiliation(s)
- Keming Wu
- School of Advanced Materials and Nanotechnology, Xidian Univerity, Xi'an 710126, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Qiang Li
- School of Advanced Materials and Nanotechnology, Xidian Univerity, Xi'an 710126, People's Republic of China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xiaoxia Bai
- School of Advanced Materials and Nanotechnology, Xidian Univerity, Xi'an 710126, People's Republic of China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Zhenhuan Zhao
- Department of Chemistry, Tufts University, Medford, MA 01255, United States of America
| |
Collapse
|
5
|
Wannassi J, Missaoui N, Mabrouk C, Castilla-Martinez CA, Moumen Y, Echouchene F, Barhoumi H, Demirci UB, Kahri H. A High-Performance Electrochemical Sensor Based on Ni-Pt Bimetallic Nanoparticles Doped Metal Organic Framework ZIF-8 for the Detection of Dopamine. Chempluschem 2025; 90:e202400734. [PMID: 39750063 DOI: 10.1002/cplu.202400734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
In this paper, microporous Zn-based zeolitic imidazolate framework with the sodalite cage structure (SOD-ZIF-8) was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and N2 adsorption were employed to characterize the synthesized material. An ultra-sensitive electrochemical sensor based on highly dispersed bimetallic Ni-Pt nanoparticles immobilized on zeolitic metal-organic framework ZIF-8 for dopamine quantification is introduced for the first time. The as-prepared Ni-Pt@ZIF-8 composite was deposited onto a glassy carbon electrode (GCE), serving as a sensor that exhibits superior properties for the detection of dopamine (DA). A Box-Behnken design was employed, and response surface methodology (RSM) was applied to investigate the impact of various experimental parameters on dopamine detection. The parameters optimized in this study included pH, drying time (hours), drop volume for deposition (μL), and accumulation time (minutes). The Box-Behnken experimental design enabled the systematic optimization of these factors to enhance the sensor's performance. Benefiting from the synergy of ZIF-8 and Ni-Pt bimetallic nanoparticles, the Ni-Pt@ZIF-8 composite exhibited high sensitivity towards dopamine, achieving a low detection limit of 1.0 nM. The sensor's linear response to dopamine (1 nM to 10 μM), resistance to interference, and high recovery in human serum, coupled with its simple fabrication, make it a promising tool for real-world dopamine detection.
Collapse
Affiliation(s)
- Jassem Wannassi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, 5019, Monastir, Tunisia
| | - Nadhem Missaoui
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, 5019, Monastir, Tunisia
| | - Chama Mabrouk
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, 5019, Monastir, Tunisia
| | - Carlos A Castilla-Martinez
- IEM (Institut Européen des Membranes), UMR5635 (CNRS, ENSCM, UM), Université de Montpellier, Place Eugene Bataillon, CC047, Montpellier, France
| | - Youssra Moumen
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, 5019, Monastir, Tunisia
| | - Fraj Echouchene
- Electronic and Microelectronics Lab, Department of Physics Faculty of Science of Monastir, University of Monastir, 5019, Monastir, Tunisia
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, Sousse, Tunisia
| | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, 5019, Monastir, Tunisia
| | - Umit B Demirci
- IEM (Institut Européen des Membranes), UMR5635 (CNRS, ENSCM, UM), Université de Montpellier, Place Eugene Bataillon, CC047, Montpellier, France
| | - Hamza Kahri
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, 5019, Monastir, Tunisia
| |
Collapse
|
6
|
Zhou Q, Xie D, Wang K, Wang F, Wang Q, Huang Y, Yu M, Huang J, Zhao Y. Evodiamine encapsulated by hyaluronic acid modified zeolitic imidazolate framework-8 for tumor targeted therapy. Drug Deliv Transl Res 2025; 15:978-991. [PMID: 38941037 DOI: 10.1007/s13346-024-01652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Evodiamine (EVO), a natural bioactive compound extracted from Evodia rutaecarpa, shows therapeutic ability against malignant melanoma. However, the poor solubility and bioavailability of EVO limit its clinical application. Metal-organic frameworks (MOFs) have shown excellent physical and chemical properties and are widely used as drug delivery systems. Among them, zeolitic imidazolate framework-8 (ZIF-8) is a research popular material because of its unique properties, such as hydrothermal stability, non-toxicity, biocompatibility, and pH sensitivity. In this study, in order to load EVO, a drug carrier that hyaluronic acid (HA) modified zeolitic imidazolate framework-8 (ZIF-8) is synthesized. This drug carrier has shown drug loading with 6.2 ± 0.6%, and the nano drugs (EVO@ZIF-8/HA) have good dispersibility. Owing to the decoration HA of EVO@ZIF-8, the potential of the nano drugs is reversed from the positive charge to the negative charge, which is beneficial to blood circulation in vivo. Furthermore, because the CD44-expressing in tumor cells is excessed, the endocytosis and accumulation of nano drugs in tumor cells are beneficial to improvement. Compared with free EVO, EVO@ZIF-8/HA has shown a significantly improved anti-tumor efficacy in vitro and in vivo. In summary, the drug carrier effectively addresses the challenges that are caused by the strong hydrophobicity and low bioavailability of EVO, thereby targeted tumor therapy of EVO can be achieved.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Dandan Xie
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Kui Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Fengling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Qiaoling Wang
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Yue Huang
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Mengjun Yu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
| | - Yu Zhao
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| |
Collapse
|
7
|
De Alwis Jayasinghe D, Chen Y, Li J, Rogacka JM, Kippax Jones M, Lu W, Sapchenko S, Yang J, Chansai S, Zhou T, Guo L, Ma Y, Dong L, Polyukhov D, Shan L, Han Y, Crawshaw D, Zeng X, Zhu Z, Hughes L, Frogley MD, Manuel P, Rudić S, Cheng Y, Hardacre C, Schröder M, Yang S. A Flexible Phosphonate Metal-Organic Framework for Enhanced Cooperative Ammonia Capture. J Am Chem Soc 2024; 146:32040-32048. [PMID: 39513623 PMCID: PMC11583364 DOI: 10.1021/jacs.4c12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Ammonia (NH3) production in 2023 reached 150 million tons and is associated with potential concomitant production of up to 500 million tons of CO2 each year. Efforts to produce green NH3 are compromised since it is difficult to separate using conventional condensation chillers, but in situ separation with minimal cooling is challenging. While metal-organic framework materials offer some potential, they are often unstable and decompose in the presence of caustic and corrosive NH3. Here, we address these challenges by developing a pore-expansion strategy utilizing the flexible phosphonate framework, STA-12(Ni), which shows exceptional stability and capture of NH3 at ppm levels at elevated temperatures (100-220 °C) even under humid conditions. A remarkable NH3 uptake of 4.76 mmol g-1 at 100 μbar (equivalent to 100 ppm) is observed, and in situ neutron powder diffraction, inelastic neutron scattering, and infrared microspectroscopy, coupled with modeling, reveal a pore expansion from triclinic to a rhombohedral structure on cooperative binding of NH3 to unsaturated Ni(II) sites and phosphonate groups. STA-12(Ni) can be readily engineered into pellets or monoliths without losing adsorption capacity, underscoring its practical potential.
Collapse
Affiliation(s)
| | - Yinlin Chen
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Jiangnan Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Justyna M Rogacka
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Meredydd Kippax Jones
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, U.K
| | - Wanpeng Lu
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Sergei Sapchenko
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Jinyue Yang
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Sarayute Chansai
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Tianze Zhou
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Lixia Guo
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yujie Ma
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Longzhang Dong
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Daniil Polyukhov
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Lutong Shan
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Yu Han
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Danielle Crawshaw
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Xiangdi Zeng
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Zhaodong Zhu
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Lewis Hughes
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, U.K
| | - Pascal Manuel
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Chilton OX11 0QX, U.K
| | - Svemir Rudić
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Chilton OX11 0QX, U.K
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Christopher Hardacre
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Martin Schröder
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Lu W, De Alwis Jayasinghe D, Schröder M, Yang S. Ammonia Storage in Metal-Organic Framework Materials: Recent Developments in Design and Characterization. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:1279-1290. [PMID: 39478984 PMCID: PMC11519835 DOI: 10.1021/accountsmr.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024]
Abstract
Since the advent of the Haber-Bosch process in 1910, the global demand for ammonia (NH3) has surged, driven by its applications in agriculture, pharmaceuticals, and energy. Current methods of NH3 storage, including high-pressure storage and transportation, present significant challenges due to their corrosive and toxic nature. Consequently, research has turned towards metal-organic framework (MOF) materials as potential candidates for NH3 storage due to their potential high adsorption capacities and structural tunability. MOFs are coordination networks composed of metal nodes and organic linkers, offering unprecedented porosity and surface area, and allowing incorporation of various functional groups and metal sites that can enhance NH3 adsorption. However, the stability of MOFs in the presence of NH3 is a significant concern since many degrade upon exposure to NH3, primarily due to ligand displacement and framework collapse. To address this, recent studies have focused on the synthesis and postsynthetic modification of MOFs to enhance both NH3 uptake and stability. In this Account, we summarize recent developments in the design and characterization of MOFs for NH3 storage. The choice of metal centers in MOFs is crucial for stability and performance. High-valence metals such as AlIII and TiIV form strong metal-linker bonds, enhancing the stability of the framework to NH3. The MFM-300 series of materials composed of high-valence 3+ and 4+ metal ions and carboxylic linkers demonstrates high stability and high NH3 uptake capacities. Ligand functionalization is another effective strategy for improving the NH3 adsorption. Polar functional groups such as -NH2, -OH, and -COOH enhance the interaction between the framework and NH3, particularly at low partial pressures, while postsynthetic modification allows fine-tuning of these functionalities to optimize the framework for higher adsorption capacities and stability. For example, MFM-303(Al), incorporating free carboxylic acid groups, exhibits a high NH3 packing density comparable to that of solid NH3. Creating defect sites by removing linkers or adding metal ions increases the number of active sites available for NH3 adsorption and shows promise for enhancing uptake. UiO-66, a stable MOF framework, can be modified to include defect sites, significantly enhancing the level of NH3 uptake. The full characterization of MOFs and especially their interactions with NH3 are vital for understanding and improving their performance. Techniques such as neutron powder diffraction (NPD), inelastic neutron scattering (INS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), electron paramagnetic resonance (EPR) spectroscopy, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy can elucidate host-guest interactions and binding dynamics between NH3 and the framework structure and afford crucial information for the future design and rational development of new sorbents. This Account highlights our current strategies for the synthesis and characterization of MOFs for NH3 capture, providing an overview of this rapidly evolving field.
Collapse
Affiliation(s)
- Wanpeng Lu
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | | | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing, China, 100871
| |
Collapse
|
9
|
Tian X, Zhao X, Wang Z, Shi Y, Li Z, Qiu J, Wang H, Zhang S, Wang J. Efficient Capture and Low Energy Release of NH 3 by Azophenol Decorated Photoresponsive Covalent Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202406855. [PMID: 38871653 DOI: 10.1002/anie.202406855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
In NH3 capture technologies, the desorption process is usually driven by high temperature and low pressure (such as 150-200 °C under vacuum), which accounts for intensive energy consumption and CO2 emission. Developing light responsive adsorbent is promising in this regard but remains a great challenge. Here, we for the first time designed and synthesized a light responsive azophenol-containing covalent organic framework (COF), COF-HNU38, to address this challenge. We found that at 25 °C and 1.0 bar, the cis -COF exhibited a NH3 uptake capacity of 7.7 mmol g-1 and a NH3/N2 selectivity of 158. In the adsorbed NH3, about 29.0 % could be removed by vis-light irradiated cis-trans isomerization at 25 °C, and the remaining NH3 might be released at 25 °C under vacuum. Almost no decrease in adsorption capacity was observed after eight adsorption-desorption cycles. As such, an efficient NH3 capture and low energy release strategy was established thanks to the multiple hydrogen bond interactions (which are strong in total but weak in individuals) between NH3 and the smart COF, as well as the increased polarity and number of hydrogen bond sites after the trans-cis isomerization.
Collapse
Affiliation(s)
- Xiaoxin Tian
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan, 453003, P. R. China
| | - Xiao Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Zhenzhen Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yunlei Shi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry and Molecular Sciences, Longzihu New Energy Laboratory, Henan University, Zhengzhou, Henan, 450000, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
10
|
Pei W, Hou L, Wang Z, Tian J, Liu Y, Tu Y, Zhao J, Zhou S. Unraveling the Photocatalytic Mechanism of N 2 Fixation on Single Ruthenium Sites. J Phys Chem Lett 2024; 15:7708-7715. [PMID: 39041828 DOI: 10.1021/acs.jpclett.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Photocatalytic N2 fixation offers promise for ammonia synthesis, yet traditional photocatalysts encounter challenges such as low efficiency and short carrier lifetimes. Atomically precise ligand-metal nanoclusters emerge as a solution to address these issues, but the photophysical mechanism remains elusive. Inspired by the synthesis of Au4Ru2 NCs, we investigate the mechanism behind N2 activation on Au4Ru2, focusing on photoactivity and carrier dynamics. Our results reveal that vibration of the Ru-N bond in the low-frequency domain suppresses the deactivation process leading to a long lifetime of the excited N2. By the strategy of isoelectronic substitution, we identify the single Ru sites as the active sites for N2 activation. Furthermore, these ligand-protected M4Ru2 (M = Au, Ag, Cu) NCs show robust thermal stability in explicit solvation and decent photochemical activity for N2 activation and NH3 production. These findings have significant implications for the optimization of catalysts for sustainable ammonia synthesis.
Collapse
Affiliation(s)
- Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Lei Hou
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Zi Wang
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jiaqi Tian
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yongfeng Liu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jijun Zhao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Si Zhou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
11
|
Rubio-Gaspar A, Misturini A, Millan R, Almora-Barrios N, Tatay S, Bon V, Bonneau M, Guillerm V, Eddaoudi M, Navalón S, Kaskel S, Armentano D, Martí-Gastaldo C. Translocation and Confinement of Tetraamines in Adaptable Microporous Cavities. Angew Chem Int Ed Engl 2024; 63:e202402973. [PMID: 38644341 DOI: 10.1002/anie.202402973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Metal-Organic Frameworks can be grafted with amines by coordination to metal vacancies to create amine-appended solid adsorbents, which are being considered as an alternative to using aqueous amine solutions for CO2 capture. In this study, we propose an alternative mechanism that does not rely on the use of neutral metal vacancies as binding sites but is enabled by the structural adaptability of heterobimetallic Ti2Ca2 clusters. The combination of hard (Ti4+) and soft (Ca2+) metal centers in the inorganic nodes of the framework enables MUV-10 to adapt its pore windows to the presence of triethylenetetramine molecules. This dynamic cluster response facilitates the translocation and binding of tetraamine inside the microporous cavities to enable the formation of bis-coordinate adducts that are stable in water. The extension of this grafting concept from MUV-10 to larger cavities not restrictive to CO2 diffusion will complement other strategies available for the design of molecular sorbents for decarbonization applications.
Collapse
Affiliation(s)
- Ana Rubio-Gaspar
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Alechania Misturini
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Reisel Millan
- Instituto de Tecnología Química (ITQ), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, 46022, Spain
| | - Neyvis Almora-Barrios
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Sergio Tatay
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Volodymyr Bon
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Mickaele Bonneau
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Stefan Kaskel
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Carlos Martí-Gastaldo
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| |
Collapse
|
12
|
Jiang HY, Wang ZM, Sun XQ, Zeng SJ, Guo YY, Bai L, Yao MS, Zhang XP. Advanced Materials for NH 3 Capture: Interaction Sites and Transport Pathways. NANO-MICRO LETTERS 2024; 16:228. [PMID: 38935160 PMCID: PMC11211316 DOI: 10.1007/s40820-024-01425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 06/28/2024]
Abstract
Ammonia (NH3) is a carbon-free, hydrogen-rich chemical related to global food safety, clean energy, and environmental protection. As an essential technology for meeting the requirements raised by such issues, NH3 capture has been intensively explored by researchers in both fundamental and applied fields. The four typical methods used are (1) solvent absorption by ionic liquids and their derivatives, (2) adsorption by porous solids, (3) ab-adsorption by porous liquids, and (4) membrane separation. Rooted in the development of advanced materials for NH3 capture, we conducted a coherent review of the design of different materials, mainly in the past 5 years, their interactions with NH3 molecules and construction of transport pathways, as well as the structure-property relationship, with specific examples discussed. Finally, the challenges in current research and future worthwhile directions for NH3 capture materials are proposed.
Collapse
Affiliation(s)
- Hai-Yan Jiang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zao-Ming Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-Ku, YoshidaKyoto, 606-8501, Japan
| | - Xue-Qi Sun
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Shao-Juan Zeng
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yang-Yang Guo
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lu Bai
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Ming-Shui Yao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Xiang-Ping Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- China University of Petroleum, Beijing, 102249, People's Republic of China.
| |
Collapse
|
13
|
Zeng X, Li J, He M, Lu W, Crawshaw D, Guo L, Ma Y, Kippax-Jones M, Cheng Y, Manuel P, Rudić S, Frogley MD, Schröder M, Yang S. High adsorption of ammonia in a titanium-based metal-organic framework. Chem Commun (Camb) 2024; 60:5912-5915. [PMID: 38712387 DOI: 10.1039/d4cc01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We report the high adsorption of NH3 in a titanium-based metal-organic framework, MFM-300(Ti), comprising extended [TiO6]∞ chains linked by biphenyl-3,3',5,5'-tetracarboxylate ligands. At 273 K and 1 bar, MFM-300(Ti) shows an exceptional NH3 uptake of 23.4 mmol g-1 with a record-high packing density of 0.84 g cm-3. Dynamic breakthrough experiments confirm the excellent uptake and separation of NH3 at low concentration (1000 ppm). The combination of in situ neutron powder diffraction and spectroscopic studies reveal strong, yet reversible binding interactions of NH3 to the framework oxygen sites.
Collapse
Affiliation(s)
- Xiangdi Zeng
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Jiangnan Li
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| | - Meng He
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Wanpeng Lu
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Danielle Crawshaw
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Lixia Guo
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| | - Yujie Ma
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Meredydd Kippax-Jones
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- Diamond Light Source, Harwell Science Campus, Oxfordshire, OX11 0DE, UK
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Pascal Manuel
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Svemir Rudić
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Oxfordshire, OX11 0DE, UK
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Sendeku MG, Shifa TA, Dajan FT, Ibrahim KB, Wu B, Yang Y, Moretti E, Vomiero A, Wang F. Frontiers in Photoelectrochemical Catalysis: A Focus on Valuable Product Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308101. [PMID: 38341618 DOI: 10.1002/adma.202308101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Photoelectrochemical (PEC) catalysis provides the most promising avenue for producing value-added chemicals and consumables from renewable precursors. Over the last decades, PEC catalysis, including reduction of renewable feedstock, oxidation of organics, and activation and functionalization of C─C and C─H bonds, are extensively investigated, opening new opportunities for employing the technology in upgrading readily available resources. However, several challenges still remain unsolved, hindering the commercialization of the process. This review offers an overview of PEC catalysis targeted at the synthesis of high-value chemicals from sustainable precursors. First, the fundamentals of evaluating PEC reactions in the context of value-added product synthesis at both anode and cathode are recalled. Then, the common photoelectrode fabrication methods that have been employed to produce thin-film photoelectrodes are highlighted. Next, the advancements are systematically reviewed and discussed in the PEC conversion of various feedstocks to produce highly valued chemicals. Finally, the challenges and prospects in the field are presented. This review aims at facilitating further development of PEC technology for upgrading several renewable precursors to value-added products and other pharmaceuticals.
Collapse
Affiliation(s)
- Marshet Getaye Sendeku
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tofik Ahmed Shifa
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Fekadu Tsegaye Dajan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kassa Belay Ibrahim
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Binglan Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying Yang
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Elisa Moretti
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Alberto Vomiero
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
- Department of Engineering Sciences and Mathematics, Division of Materials Science, Luleå University of Technology, Luleå, 97187, Sweden
| | - Fengmei Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
15
|
Zhu Z, Duan J, Chen S. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309119. [PMID: 38126651 DOI: 10.1002/smll.202309119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Carbon neutrality is an important goal for humanity . As an eco-friendly technology, electrocatalytic clean energy conversion technology has emerged in the 21st century. Currently, metal-organic framework (MOF)-based electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), are the mainstream energy catalytic reactions, which are driven by electrocatalysis. In this paper, the current advanced characterizations for the analyses of MOF-based electrocatalytic energy reactions have been described in details, such as density function theory (DFT), machine learning, operando/in situ characterization, which provide in-depth analyses of the reaction mechanisms related to the above reactions reported in the past years. The practical applications that have been developed for some of the responses that are of application values, such as fuel cells, metal-air batteries, and water splitting have also been demonstrated. This paper aims to maximize the potential of MOF-based electrocatalysts in the field of energy catalysis, and to shed light on the development of current intense energy situations.
Collapse
Affiliation(s)
- Zheng Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| |
Collapse
|
16
|
Chen J, Zhang X, Cai Z, Zhang Y, Song Q, Hua XN, Sun B. Intermolecular Forces Regulating the Phase-Transition Temperatures in Organic-Inorganic Hybrid Materials. Inorg Chem 2024; 63:7770-7779. [PMID: 38608286 DOI: 10.1021/acs.inorgchem.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Organic-inorganic hybrid phase-transition materials have attracted widespread attention in energy storage and sensor applications due to their structural adaptability and facile synthesis. However, increasing the phase-transition temperature (Tc) effectively remains a formidable challenge. In this study, we employed a strategy to regulate intermolecular interactions (different types of hydrogen bonds and other weak interactions), utilizing bismuth chloride as an inorganic framework and azetidine, 3,3-difluoro azetidine, and 3-carboxyl azetidine as organic components to synthesize three compounds with different Tc values: [C3H8N]2BiCl5 (1, 234 K), [C3H6NF2]3BiCl6 (2, 256 K), and [C4H8O2N]3BiCl6 (3, 350 K). 1 is a one-dimensional chain structure and 2 and 3 are zero-dimensional structures. Analysis of the crystal structure and the Hirshfeld surface and 2D fingerprints further suggests that the intermolecular forces are efficiently modulated. These findings emphasize the efficacy of our strategy in enhancing Tc and may facilitate further research in this area.
Collapse
Affiliation(s)
- Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiang Zhang
- Jiangyan High School of Jiangsu Province, Taizhou 225599, P. R. China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yinan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Qi Song
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Xiu-Ni Hua
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
17
|
Chai W, Chen X, Liu J, Zhang L, Liu C, Li L, Honiball JR, Pan H, Cui X, Wang D. Recent progress in functional metal-organic frameworks for bio-medical application. Regen Biomater 2023; 11:rbad115. [PMID: 38313824 PMCID: PMC10838214 DOI: 10.1093/rb/rbad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 02/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) have a high specific surface area, adjustable pores and can be used to obtain functional porous materials with diverse and well-ordered structures through coordination and self-assembly, which has intrigued wide interest in a broad range of disciplines. In the arena of biomedical engineering, the functionalized modification of MOFs has produced drug carriers with excellent dispersion and functionalities such as target delivery and response release, with promising applications in bio-detection, disease therapy, tissue healing, and other areas. This review summarizes the present state of research on the functionalization of MOFs by physical binding or chemical cross-linking of small molecules, polymers, biomacromolecules, and hydrogels and evaluates the role and approach of MOFs functionalization in boosting the reactivity of materials. On this basis, research on the application of functionalized MOFs composites in biomedical engineering fields such as drug delivery, tissue repair, disease treatment, bio-detection and imaging is surveyed, and the development trend and application prospects of functionalized MOFs as an important new class of biomedical materials in the biomedical field are anticipated, which may provide some inspiration and reference for further development of MOF for bio-medical applications.
Collapse
Affiliation(s)
- Wenwen Chai
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xiaochen Chen
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Liu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Liyan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunyu Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Li
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - John Robert Honiball
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haobo Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xu Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
18
|
Tian N, Comer BM, Medford AJ. Screening and Discovery of Metal Compound Active Sites for Strong and Selective Adsorption of N 2 in Air. CHEMSUSCHEM 2023; 16:e202300948. [PMID: 37890028 DOI: 10.1002/cssc.202300948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
Photocatalytic nitrogen fixation has the potential to provide a greener route for producing nitrogen-based fertilizers under ambient conditions. Computational screening is a promising route to discover new materials for the nitrogen fixation process, but requires identifying "descriptors" that can be efficiently computed. In this work, we argue that selectivity toward the adsorption of molecular nitrogen and oxygen can act as a key descriptor. A catalyst that can selectively adsorb nitrogen and resist poisoning of oxygen and other molecules present in air has the potential to facilitate the nitrogen fixation process under ambient conditions. We provide a framework for active site screening based on multifidelity density functional theory (DFT) calculations for a range of metal oxides, oxyborides, and oxyphosphides. The screening methodology consists of initial low-fidelity fixed geometry calculations and a second screening in which more expensive geometry optimizations were performed. The approach identifies promising active sites on several TiO2 polymorph surfaces and a VBO4 surface, and the full nitrogen reduction pathway is studied with the BEEF-vdW and HSE06 functionals on two active sites. The findings suggest that metastable TiO2 polymorphs may play a role in photocatalytic nitrogen fixation, and that VBO4 may be an interesting material for further studies.
Collapse
Affiliation(s)
- Nianhan Tian
- Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA, 30332, United States
| | - Benjamin M Comer
- SUNCAT Center for Interface Science and Catalysis 443 Via Ortega, Stanford, CA 94305 United States, SLAC National Accelerator Laboratory 2575 Sand Hill Road, Mail Stop 31, Menlo Park, California, 94025, United States
- Now at Shell Global Solutions (United States) Inc, Houston, TX, United States
| | - Andrew J Medford
- Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA, 30332, United States
| |
Collapse
|
19
|
Li X, Yang L, Liu Q, Bai W, Li H, Wang M, Qian Q, Yang Q, Xiao C, Xie Y. Directional Shunting of Photogenerated Carriers in POM@MOF for Promoting Nitrogen Adsorption and Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304532. [PMID: 37595959 DOI: 10.1002/adma.202304532] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/20/2023] [Indexed: 08/20/2023]
Abstract
The efficient catalysis of nitrogen (N2 ) into high-value N-containing products plays a crucial role in the N economic cycle. However, weak N2 adsorption and invalid N2 activation remain two major bottlenecks in rate-determining steps, leading to low N2 fixation performance. Herein, an effective dual active sites photocatalyst of polyoxometalates (POMs)-based metal-organic frameworks (MOFs) is highlighted via altering coordination microenvironment and inducing directional shunting of photogenerated carriers to facilitate N2 /catalyst interaction and enhance oxidation performance. MOFs create more open unsaturated metal cluster sites with unoccupied d orbital possessing Lewis acidity to accept electrons from the 3σg bonding orbital of N2 for storage by combining with POMs to replace bidentate linkers. POMs act as electron sponges donating electrons to MOFs, while the holes directional flow to POMs. The hole-rich POMs with strong oxidation capacity are easily involved in oxidizing adsorbed N2 . Taking UiO-66 (C48 H28 O32 Zr6 ) and Mo72 Fe30 ([Mo72 Fe30 O252 (CH3 COO)12 {Mo2 O7 (H2 O)}2 {H2 Mo2 O8 (H2 O)}(H2 O)91 ]·150H2 O) as an example, Mo72 Fe30 @UiO-66 shows twofold enhanced adsorption of N2 (250.5 cm3 g-1 ) than UiO-66 (122.9 cm3 g-1 ) at P/P0 = 1. And, the HNO3 yield of Mo72 Fe30 @UiO-66 is 702.4 µg g-1 h-1 , ≈7 times and 24 times higher than UiO-66 and Mo72 Fe30 . This work provides reliable value for the storage and relaying artificial N2 fixation.
Collapse
Affiliation(s)
- Xiaohong Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lan Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qilong Liu
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Wei Bai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huiyi Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mengxiang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qinghua Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chong Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
20
|
Feng Y, Wu LH, Zhang CH, Zhou BX, Zheng SR, Zhang WG, Cai SL, Fan J. Porous amorphous metal-organic frameworks based on heterotopic triangular ligands for iodine and high-capacity dye adsorption. Dalton Trans 2023; 52:12087-12097. [PMID: 37581335 DOI: 10.1039/d3dt01350b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The research on amorphous metal-organic frameworks (aMOFs) is still in its infancy, and designing and constructing aMOFs with functional pores remains a challenge. Two aMOFs based on Co(II) and heterotopic triangular ligands with large conjugated aromatic planes, namely aMOF-1 and aMOF-2, were constructed and characterized by IR, XPS, EA, ICP, XANS and so on. aMOF-1 possesses mesopores, whereas aMOF-2 possesses micropores. The porosity, conjugated aromatic plane and uncoordinated N atoms in the framework allow these aMOFs to adsorb iodine and dyes. The iodine adsorption capacity of aMOF-1 is 3.3 g per g, which is higher than that of aMOF-2 (0.56 g per g), mainly due to the expansion or swelling of aMOF-1 after iodine adsorption. The uptake of cationic dyes by aMOF-2 showed more rapid kinetics and a higher removal rate than that by aMOF-1, mainly due to the difference in the porosity and surface charge. Although the surface charges of aMOF-1 and aMOF-2 are negative, both of them showed significantly faster adsorption kinetics toward anionic dyes, among which methyl orange (MO) and Congo red (CR) can be removed in 5 min. This occurs possibly because the quick adsorption of Na+ ions alters the surface charge of the framework and promotes dye uptake. The adsorption capacities of aMOF-1 for MO and CR reached 921 and 2417 mg g-1, respectively. The correlation data for aMOF-2 are 1042 and 1625 mg g-1, respectively. All adsorption capacities are among the highest compared to many cMOFs. Adsorption in mixed dye solution is found to be charge-dependent, kinetic-dependent, and synergetic in these systems. The porosity, surface charge regulation during adsorption, weak interactions and multiple adsorption processes contribute to the dye adsorption performance.
Collapse
Affiliation(s)
- Ying Feng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Liang-Hua Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Chu-Hong Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Bing-Xun Zhou
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Sheng-Run Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Wei-Guang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Song-Liang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|