1
|
Li ZQ, Alturaifi TM, Cao Y, Joannou MV, Liu P, Engle KM. Hemilabile and Redox-Active Quinone Ligands Unlock sp 3-Rich Couplings in Nickel-Catalyzed Olefin Carbosulfenylation. Angew Chem Int Ed Engl 2024; 63:e202411870. [PMID: 39222319 DOI: 10.1002/anie.202411870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
A three-component coupling approach toward structurally complex dialkylsulfides is described via the nickel-catalyzed 1,2-carbosulfenylation of unactivated alkenes with organoboron nucleophiles and alkylsulfenamide (N-S) electrophiles. Efficient catalytic turnover is facilitated using a tailored N-S electrophile containing an N-methyl methanesulfonamide leaving group, allowing catalyst loadings as low as 1 mol %. Regioselectivity is controlled by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, amides, sulfinamides, phosphoramides, and carbamates. Key to the development of this transformation is the identification of quinones as a family of hemilabile and redox-active ligands that tune the steric and electronic properties of the metal throughout the catalytic cycle. Density functional theory (DFT) results show that the duroquinone (DQ) ligand adopts different coordination modes in different stages of the Ni-catalyzed 1,2-carbosulfenylation-binding as an η6 capping ligand to stabilize the precatalyst/resting state and prevent catalyst decomposition, binding as an X-type redox-active durosemiquinone radical anion to promote alkene migratory insertion with a less distorted square planar Ni(II) center, and binding as an L-type ligand to promote N-S oxidative addition at a relatively more electron-rich Ni(I) center.
Collapse
Affiliation(s)
- Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Turki M Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, USA
| | - Yilin Cao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Matthew V Joannou
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
2
|
Wang DM, Shan HM, She LQ, He YQ, Wu Y, Tang Y, Xu LP, Wang P. Ligand-enabled Ni-catalysed dicarbofunctionalisation of alkenes with diverse native functional groups. Nat Commun 2024; 15:10333. [PMID: 39609388 PMCID: PMC11604661 DOI: 10.1038/s41467-024-54170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
The transition metal-catalysed dicarbofunctionalisation of unactivated alkenes normally requires exogenous strong coordinated directing groups, thus reducing the overall reaction efficiency. Here, we report a ligand-enabled Ni(II)-catalysed dicarbofunctionalisation of unactivated alkenes with aryl/alkenyl boronic acids and alkyl halides as the coupling partners with a diverse range of native functional groups as the directing group. This dicarbofunctionalisation protocol provides an efficient and direct route towards vicinal 1,2-disubstituted alkanes using primary, secondary, tertiary amides, sulfonamides, as well as secondary and tertiary amines under redox-neutral conditions that are challenging to access through conventional methods. The key to the success of this reaction is the use of a bulky β-diketone ligand, which could enable the insertion of alkene to aryl-Ni(II) species, stabilize the alkyl-Ni(II) species and inhibit the homolytic alkyl-Ni(II) cleavage, supporting by both experimental and computational studies. This dicarbofunctionalisation reaction features the use of native directing group, a broad substrate scope, and excellent scalability.
Collapse
Affiliation(s)
- Dao-Ming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Hui-Mei Shan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, PR China
| | - Li-Qin She
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China
| | - Yu-Qing He
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, PR China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, PR China.
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, PR China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, PR China.
| |
Collapse
|
3
|
Zou L, Zheng X, Yi X, Lu Q. Asymmetric paired oxidative and reductive catalysis enables enantioselective alkylarylation of olefins with C(sp 3)-H bonds. Nat Commun 2024; 15:7826. [PMID: 39244599 PMCID: PMC11380679 DOI: 10.1038/s41467-024-52248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Enantioselective transformations of hydrocarbons to three-dimensional chiral molecules remain a significant challenge in synthetic chemistry. This study uses asymmetric paired oxidative and reductive catalysis to promote the enantioselective alkylarylation of olefins through the functionalization of C(sp3)-H bonds in alkanes. This asymmetric photoelectrocatalytic approach enables the facile construction of a wide range of enantioenriched α-aryl carbonyls with excellent enantioselectivity (up to 96% ee) from readily accessible starting materials. Notably, aryl bromides, aryl iodides, and even aryl chlorides were compatible with the developed catalytic system. Mechanistic studies reveal that alkanes and electrophiles are simultaneously activated on the electrodes.
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyue Zheng
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - XueZheng Yi
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, P. R. China.
| |
Collapse
|
4
|
Cao K, Han J, Ye W, Hu D, Ye Z, Yang J, Zhang J, Chen F. Enantioselective Aminosilylation of Alkenes by Palladium/Ming-Phos-Catalyzed Tandem Narasaka-Heck/Silylation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403470. [PMID: 38970207 PMCID: PMC11425962 DOI: 10.1002/advs.202403470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/08/2024] [Indexed: 07/08/2024]
Abstract
A Pd-catalyzed enantioselective aminosilylation of alkenes via tandem Aza-Heck/silylation reaction under Pd/Sadphos catalysis is disclosed. A wide array of oxime esters and silicon reagents are tolerated, furnishing the chiral pyrrolines bearing one quaternary or two contiguous stereocenters in good yield with high enantioselectivity. Not only terminal alkenes but also tri-substituented internal alkenes successfully participate in the reaction, delivering vicinal stereocenters in complete diastereoselectivity and high enantioselectivity. DFT study is conducted to probe the reaction pathway and the origin of the enantioselectivity, which revealed that the stereoinduction arises from the weak interaction between the aromatic ring of the substrate fragment and naphthyl group in the ligand.
Collapse
Affiliation(s)
- Kangning Cao
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University ShanghaiShanghai200433China
| | - Jie Han
- School of Chemical & Environmental ScienceShaanxi University of TechnologyHanzhong723001China
| | - Wenshao Ye
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Dejun Hu
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Zihao Ye
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Junfeng Yang
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Junliang Zhang
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
- Zhuhai Fudan Innovation InstituteZhuhai519000China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University ShanghaiShanghai200433China
| |
Collapse
|
5
|
Spieß P, Brześkiewicz J, Meyrelles R, Just D, Maulide N. Deprotective Functionalization: A Direct Conversion of Nms-Amides to Carboxamides Using Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202318304. [PMID: 38501885 PMCID: PMC11497274 DOI: 10.1002/anie.202318304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 03/20/2024]
Abstract
The nature of protecting group chemistry necessitates a deprotection step to restore the initially blocked functionality prior to further transformation. As this aspect of protecting group manipulation inevitably adds to the step count of any synthetic sequence, the development of methods enabling simultaneous deprotection and functionalization ("deprotective functionalization"-distinct from "deprotection followed by functionalization") is appealing, as it has the potential to improve efficiency and streamline synthetic routes. Herein, we report a deprotective functionalization of the newly introduced Nms-amides guided by density functional theory (DFT) analysis, which exploits the inherent Nms reactivity. Mechanistic studies further substantiate and help rationalize the exquisite reactivity of Nms-amides, as other commonly used protecting groups are shown not to exhibit the same reactivity patterns. The practicality of this approach was ultimately demonstrated in selected case studies.
Collapse
Affiliation(s)
- Philipp Spieß
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - Jakub Brześkiewicz
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - Ricardo Meyrelles
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - David Just
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| |
Collapse
|
6
|
Yang H, Zhang Z, Cao P, Yang T. Nickel-Catalyzed Reductive Alkene Cross-Dialkylation with Unactivated Alkyl Electrophiles. Org Lett 2024; 26:1190-1195. [PMID: 38308849 DOI: 10.1021/acs.orglett.3c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
A Ni-catalyzed reductive dialkylation of 8-aminoquinoline-tethered aliphatic alkenes with two unactivated alkyl electrophiles is disclosed here. Key to the development of this transformation is the combination of primary alkyl (pseudo)halides and secondary alkyl iodides that produce products in a single regioselective manner. The reaction exhibits good functional group compatibility, and its synthetic utility was demonstrated by the concise synthesis of the precursors of biologically relevant molecules.
Collapse
Affiliation(s)
- Huixia Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Zeming Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Panting Cao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Tao Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
7
|
Chen W, Yu L, Pan Y, Ni S, Wang Y. Electrochemical Nickel-Catalyzed 1,2-Diarylation of 1,3-Dienes. Org Lett 2023; 25:9225-9230. [PMID: 38113061 DOI: 10.1021/acs.orglett.3c03936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Due to the presence of carbon-carbon double bonds, 1,3-dienes exhibit great reactivity. A protocol for the site-selective diarylation of terminal 1,3-dienes is reported here. The transformation is facilitated by the Ni catalyst without the need for additional ligands, utilizing an electrochemical setup. Preliminary results indicate that by introducing chiral ligands moderate enantioselective diarylation products can be obtained. This method affords diversely substituted diarylated products that occur as structural motifs in various natural products.
Collapse
Affiliation(s)
- Wangzhe Chen
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Yu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Kevlishvili I, Duan C, Kulik HJ. Classification of Hemilabile Ligands Using Machine Learning. J Phys Chem Lett 2023:11100-11109. [PMID: 38051982 DOI: 10.1021/acs.jpclett.3c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Hemilabile ligands have the capacity to partially disengage from a metal center, providing a strategy to balance stability and reactivity in catalysis, but they are not straightforward to identify. We identify ligands in the Cambridge Structural Database that have been crystallized with distinct denticities and are thus identifiable as hemilabile ligands. We implement a semi-supervised learning approach using a label-spreading algorithm to augment a small negative set that is supported by heuristic rules of ligand and metal co-occurrence. We show that a heuristic based on coordinating atom identity alone is not sufficient to identify whether a ligand is hemilabile, and our trained machine-learning classification models are instead needed to predict whether a bi-, tri-, or tetradentate ligand is hemilabile with high accuracy and precision. Feature importance analysis of our models shows that the second, third, and fourth coordination spheres all play important roles in ligand hemilability.
Collapse
Affiliation(s)
- Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Wang YZ, Sun B, Zhu XY, Gu YC, Ma C, Mei TS. Enantioselective Reductive Cross-Couplings of Olefins by Merging Electrochemistry with Nickel Catalysis. J Am Chem Soc 2023; 145:23910-23917. [PMID: 37883710 DOI: 10.1021/jacs.3c10109] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The merger of electrochemistry and transition metal catalysis has emerged as a powerful tool to join two electrophiles in an enantioselective manner. However, the development of enantioselective electroreductive cross-couplings of olefins remains a challenge. Inspired by the advantages of the synergistic use of electrochemistry with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of acrylates with aryl halides and alkyl bromides, which affords chiral α-aryl carbonyls in good to excellent enantioselectivity. Additionally, this catalytic reaction can be applied to (hetero)aryl chlorides, which is difficult to achieve by other methods. The combination of cyclic voltammetry analysis with electrode potential studies suggests that the NiI species activates aryl halides by oxidative addition and alkyl bromides by single-electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bing Sun
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-Yu Zhu
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, United Kingdom
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Wang ZC, Zhang JW, Koh MJ, Shi SL. Divergent and Selective Light Alkene Cross-Coupling. Angew Chem Int Ed Engl 2023; 62:e202310203. [PMID: 37786301 DOI: 10.1002/anie.202310203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 10/04/2023]
Abstract
Light olefins are abundantly manufactured in the petroleum industry and thus represent ideal starting materials for modern chemical synthesis. Selective and divergent transformations of feedstock light olefins to value-added chemicals are highly sought-after but remain challenging. Herein we report an exceptionally regioselective carbonickelation of light alkenes followed by in situ trapping with three types of nucleophiles, namely a reductant, base, or Grignard reagent. This protocol enables efficient 1,2-hydrofunctionalization, dicarbofunctionalization, and branched-selective Heck-type cross-coupling of light alkenes with aryl and alkenyl reagents to streamline access to diverse alkyl arenes and complex alkenes. Harnessing bulky N-heterocyclic carbene ligands with acenaphthyl backbones for nickel catalysts is crucial to attain high reactivity and selectivity. This strategy provides a rare, modular, and divergent platform for upgrading feedstock alkenes and is expected to find broad applications in medicinal chemistry and industrial processes.
Collapse
Affiliation(s)
- Zi-Chao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Jia-Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
11
|
Spieß P, Sirvent A, Tiefenbrunner I, Sargueil J, Fernandes AJ, Arroyo‐Bondía A, Meyrelles R, Just D, Prado‐Roller A, Shaaban S, Kaiser D, Maulide N. Nms-Amides: An Amine Protecting Group with Unique Stability and Selectivity. Chemistry 2023; 29:e202301312. [PMID: 37283481 PMCID: PMC10946766 DOI: 10.1002/chem.202301312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 06/08/2023]
Abstract
p-Toluenesulfonyl (Tosyl) and nitrobenzenesulfonyl (Nosyl) are two of the most common sulfonyl protecting groups for amines in contemporary organic synthesis. While p-toluenesulfonamides are known for their high stability/robustness, their use in multistep synthesis is plagued by difficult removal. Nitrobenzenesulfonamides, on the other hand, are easily cleaved but display limited stability to various reaction conditions. In an effort to resolve this predicament, we herein present a new sulfonamide protecting group, which we term Nms. Initially developed through in silico studies, Nms-amides overcome these previous limitations and leave no room for compromise. We have investigated the incorporation, robustness and cleavability of this group and found it to be superior to traditional sulfonamide protecting groups in a broad range of case studies.
Collapse
Affiliation(s)
- Philipp Spieß
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Ana Sirvent
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignUniversity of ViennaJosef-Holaubek-Platz 21090ViennaAustria
| | - Irmgard Tiefenbrunner
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Jules Sargueil
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Anthony J. Fernandes
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignUniversity of ViennaJosef-Holaubek-Platz 21090ViennaAustria
| | - Ana Arroyo‐Bondía
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Ricardo Meyrelles
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - David Just
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | | | - Saad Shaaban
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Daniel Kaiser
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignUniversity of ViennaJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
12
|
Ni HQ, Karunananda MK, Zeng T, Yang S, Liu Z, Houk KN, Liu P, Engle KM. Redox-Paired Alkene Difunctionalization Enables Skeletally Divergent Synthesis. J Am Chem Soc 2023. [PMID: 37220422 DOI: 10.1021/jacs.3c03274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multistep organic synthesis enables conversion of simple chemical feedstocks into a more structurally complex product that serves a particular function. The target compound is forged over several steps, with concomitant generation of byproducts in each step to account for underlying mechanistic features of the reactions (e.g., redox processes). To map structure-function relationships, libraries of molecules are often needed, and these are typically prepared by iterating an established multistep synthetic sequence. An underdeveloped approach is designing organic reactions that generate multiple valuable products with different carbogenic skeletons in a single synthetic operation. Taking inspiration from paired electrosynthesis processes that are widely used in commodity chemical production (e.g., conversion of glucose to sorbitol and gluconic acid), we report a palladium-catalyzed reaction that converts a single alkene starting material into two skeletally distinct products in a single operation through a series of carbon-carbon and carbon-heteroatom bond-forming events enabled by mutual oxidation and reduction, a process that we term redox-paired alkene difunctionalization. We demonstrate the scope of the method in enabling simultaneous access to reductively 1,2-diarylated and oxidatively [3 + 2]-annulated products, and we explore the mechanistic details of this unique catalytic system using a combination of experimental techniques and density functional theory (DFT). The results described herein establish a distinct approach to small-molecule library synthesis that can increase the rate of compound production. Furthermore, these findings demonstrate how a single transition-metal catalyst can mediate a sophisticated redox-paired process through multiple pathway-selective events along the catalytic cycle.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Malkanthi K Karunananda
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Tian Zeng
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Shenghua Yang
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Liu
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Dong Z, Tang Q, Xu C, Chen L, Ji H, Zhou S, Song L, Chen LA. Directed Asymmetric Nickel-Catalyzed Reductive 1,2-Diarylation of Electronically Unactivated Alkenes. Angew Chem Int Ed Engl 2023; 62:e202218286. [PMID: 36719253 DOI: 10.1002/anie.202218286] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
Transition-metal catalyzed intermolecular 1,2-diarylation of electronically unactivated alkenes has emerged as an extensive research topic in organic synthesis. However, most examples are mainly limited to terminal alkenes. Furthermore, transition-metal catalyzed asymmetric 1,2-diarylation of unactivated alkenes still remains unsolved and is a formidable challenge. Herein, we describe a highly efficient directed nickel-catalyzed reductive 1,2-diarylation of unactivated internal alkenes with high diastereoselectivities. More importantly, our further effort towards enantioselective 1,2-diarylation of the unactivated terminal and challenging internal alkenes is achieved, furnishing various polyarylalkanes featuring benzylic stereocenters in high yields and with good to high enantioselectivities and high diastereoselectivities. Interestingly, the generation of cationic Ni-catalyst by adding alkali metal fluoride is the key to increased efficiency of this enantioselective reaction.
Collapse
Affiliation(s)
- Zhan Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qiongyao Tang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Changyu Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Li Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Haiting Ji
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Sitian Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Liangliang Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
14
|
Zhao H, Yuan W. Three-component reductive conjugate addition/aldol tandem reaction enabled by nickel/photoredox dual catalysis. Chem Sci 2023; 14:1485-1490. [PMID: 36794187 PMCID: PMC9906790 DOI: 10.1039/d2sc06303d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
A three-component reductive cross-coupling of aryl halides, aldehydes, and alkenes by nickel/photoredox dual catalysis is disclosed. The key to success for this tandem transformation is to identify α-silylamine as a unique organic reductant, which releases silylium ions instead of protons to prevent unwanted protonation processes, and meanwhile serves as Lewis acid to activate aldehydes in situ. This dual catalytic protocol completes a traditional conjugate addition/aldol sequence that eliminates the requirement of organometallic reagents and metal-based reductants, thus providing a mild synthetic route to highly valuable β-hydroxyl carbonyl compounds with contiguous 1,2-stereocenters.
Collapse
Affiliation(s)
- Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 PR China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 PR China .,Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518000 PR China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 PR China
| |
Collapse
|