1
|
Maciel EVS, Habeck T, Meyners C, Lermyte F. Self-packed size-exclusion columns enable versatile high-throughput native, top-down, and ion mobility-mass spectrometry studies on proteins and complexes. Talanta 2025; 291:127868. [PMID: 40056653 DOI: 10.1016/j.talanta.2025.127868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Native MS (nMS) is a key structural biology technique that makes it possible to study intact proteins and their interactions. Unfortunately, non-volatile salts are incompatible with nMS, which demands a laborious desalting procedure. Non-denaturing size-exclusion chromatography (SEC) allows both rapid desalting and separation and has previously been explored for nMS automation. However, SEC at conventional scale requires rather large sample amounts as well as harsh ESI conditions, which can cause protein unfolding. Capillary LC allows softer conditions; however, the few commercially available SEC columns appropriate for this flow rate are prohibitively expensive for many laboratories. Existing protocols for packing buffer exchange columns rely on specialized equipment and/or result in columns that have limited capacity for size-based protein separation. Here, we present self-packed miniaturized SEC columns with different stationary phases and customizable dimensions. The columns, produced via slurry packing with an ordinary LC pump were used across a range of samples in several applications including nMS, top-down MS (TDMS), ligand screening, and ion mobility (IM)-MS. Native separation allowed acquisition of data from samples containing more than one protein. We acquired native TDMS data of 3 proteins in 12 min, with up to 47 % sequence coverage. IM-MS of alpha-synuclein at different charge states was measured in ca. 60 min (including calibrants), with results that match the literature. Finally, we used SEC-nMS to rapidly screen proteolysis-targeting chimera candidates and performed collision-induced unfolding (CIU) of a PROTAC-induced ternary complex. Through this work, we highlight the potential of SEC to support developments in structural MS.
Collapse
Affiliation(s)
- Edvaldo Vasconcelos Soares Maciel
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| | - Tanja Habeck
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| | - Christian Meyners
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| | - Frederik Lermyte
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| |
Collapse
|
2
|
Le J, Loo JA. Native Top-Down Mass Spectrometry Characterization of Model Integral Membrane Protein Bacteriorhodopsin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:961-968. [PMID: 40234026 DOI: 10.1021/jasms.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Bacteriorhodopsin (bR) from Halobacterium salinarum has been a model system for structural biology and is a structural template for the characterization of membrane G-protein couple receptors (GPCRs) in particular. In this study, wild-type bacteriorhodopsin and two single-residue mutants were characterized by native top-down mass spectrometry (nTD-MS) with Orbitrap-based high-energy collision dissociation (HCD) and electron capture dissociation (ECD). After in-source dissociation ejected the membrane protein from detergent micelles, high-resolution native MS measurement allowed for identification of multiple proteoforms as well as lipid-bound forms. Further top-down MS measurements by HCD produced a large number of product ions for in-depth sequencing and unambiguous localization of post-translational modifications. For the first time, native TD-MS with ECD was used to characterize an integral membrane protein. ECD yielded fragments originating from all helices and loop regions, even accessing a sequence stretch that HCD could not. Combining HCD and ECD fragmentation patterns significantly enhanced the sequence coverage of bR. We propose bR to be a model analyte for testing nTD-MS performance for membrane proteins.
Collapse
Affiliation(s)
- Jessie Le
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Fischer MS, Rogers HT, Chapman EA, Jin S, Ge Y. Native Top-Down Proteomics of Endogenous Protein Complexes Enabled by Online Two-Dimensional Liquid Chromatography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645965. [PMID: 40236213 PMCID: PMC11996319 DOI: 10.1101/2025.03.28.645965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Protein complexes are essential for virtually all biological processes, yet their structural characterization remains a major challenge due to their heterogeneous, dynamic nature and the complexity of the proteome. Native top-down mass spectrometry (nTDMS) has emerged as a powerful tool for comprehensive structural characterization of purified protein complexes, but its application to endogenous protein complexes in the proteome is challenging and typically requires labor-intensive and time-consuming prefractionation. Here, for the first time, we develop a nondenaturing online two-dimensional liquid chromatography (2D-LC) method for native top-down proteomics (nTDP), enabling high-throughput structural analysis of endogenous protein complexes. The automated, online interfacing of size-exclusion and mixed-bed ion-exchange chromatography achieves high coverage of endogenous protein complexes. We further develop a multistage nTDMS approach that enables comprehensive structural characterization within the chromatographic timescale, capturing intact non-covalent complexes, released subunits/cofactors, and backbone fragments. Our analysis detected 133 native proteoforms and endogenous protein complexes (up to 350 kDa) from human heart tissue in less than two hours. Such technological leaps in high-throughput structural characterization of endogenous protein complexes will advance large-scale nTDP studies in health and disease.
Collapse
|
4
|
Lutomski CA, Bennett JL, El-Baba TJ, Wu D, Hinkle JD, Burnap SA, Liko I, Mullen C, Syka JEP, Struwe WB, Robinson CV. Defining proteoform-specific interactions for drug targeting in a native cell signalling environment. Nat Chem 2025; 17:204-214. [PMID: 39806141 PMCID: PMC11794133 DOI: 10.1038/s41557-024-01711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Understanding the dynamics of membrane protein-ligand interactions within a native lipid bilayer is a major goal for drug discovery. Typically, cell-based assays are used, however, they are often blind to the effects of protein modifications. In this study, using the archetypal G protein-coupled receptor rhodopsin, we found that the receptor and its effectors can be released directly from retina rod disc membranes using infrared irradiation in a mass spectrometer. Subsequent isolation and dissociation by infrared multiphoton dissociation enabled the sequencing of individual retina proteoforms. Specifically, we categorized distinct proteoforms of rhodopsin, localized labile palmitoylations, discovered a Gβγ proteoform that abolishes membrane association and defined lipid modifications on G proteins that influence their assembly. Given reports of undesirable side-effects involving vision, we characterized the off-target drug binding of two phosphodiesterase 5 inhibitors, vardenafil and sildenafil, to the retina rod phosphodiesterase 6 (PDE6). The results demonstrate differential off-target reactivity with PDE6 and an interaction preference for lipidated proteoforms of G proteins. In summary, this study highlights the opportunities for probing proteoform-ligand interactions within natural membrane environments.
Collapse
Affiliation(s)
- Corinne A Lutomski
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jack L Bennett
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Tarick J El-Baba
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Sean A Burnap
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | - Weston B Struwe
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Peris-Díaz MD, Krężel A, Barran P. Deciphering the safeguarding role of cysteine residues in p53 against H 2O 2-induced oxidation using high-resolution native mass spectrometry. Commun Chem 2025; 8:13. [PMID: 39814824 PMCID: PMC11736120 DOI: 10.1038/s42004-024-01395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
The transcription factor p53 is exquisitely sensitive and selective to a broad variety of cellular environments. Several studies have reported that oxidative stress weakens the p53-DNA binding affinity for certain promoters depending on the oxidation mechanism. Despite this body of work, the precise mechanisms by which the physiologically relevant DNA-p53 tetramer complex senses cellular stresses caused by H2O2 are still unknown. Here, we employed native mass spectrometry (MS) and ion mobility (IM)-MS coupled to chemical labelling and H2O2-induced oxidation to examine the mechanism of redox regulation of the p53-p21 complex. Our approach has found that two reactive cysteines in p53 protect against H2O2-induced oxidation by forming reversible sulfenates.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Manchester, UK.
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, Poland.
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, Poland
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Manchester, UK.
| |
Collapse
|
6
|
Britt H, Ben-Younis A, Page N, Thalassinos K. A Conformation-Specific Approach to Native Top-down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3203-3213. [PMID: 39453623 PMCID: PMC11622372 DOI: 10.1021/jasms.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Native top-down mass spectrometry is a powerful approach for characterizing proteoforms and has recently been applied to provide similarly powerful insights into protein conformation. Current approaches, however, are limited such that structural insights can only be obtained for the entire conformational landscape in bulk or without any direct conformational measurement. We report a new ion-mobility-enabled method for performing native top-down MS in a conformation-specific manner. Our approach identified conformation-linked differences in backbone dissociation for the model protein calmodulin, which simultaneously informs upon proteoform variations and provides structural insights. We also illustrate that our method can be applied to protein-ligand complexes, either to identify components or to probe ligand-induced structural changes.
Collapse
Affiliation(s)
- Hannah
M. Britt
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Nathanael Page
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- LGC
Group, Teddington TW11 0LY, United Kingdom
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- Institute
of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United
Kingdom
| |
Collapse
|
7
|
Habeck T, Brown KA, Des Soye B, Lantz C, Zhou M, Alam N, Hossain MA, Jung W, Keener JE, Volny M, Wilson JW, Ying Y, Agar JN, Danis PO, Ge Y, Kelleher NL, Li H, Loo JA, Marty MT, Paša-Tolić L, Sandoval W, Lermyte F. Top-down mass spectrometry of native proteoforms and their complexes: a community study. Nat Methods 2024; 21:2388-2396. [PMID: 38744918 PMCID: PMC11561160 DOI: 10.1038/s41592-024-02279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.
Collapse
Affiliation(s)
- Tanja Habeck
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Kyle A Brown
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Mowei Zhou
- Pacific Northwest National Laboratory, Richland, WA, USA
- Zhejiang University, Zhejiang, China
| | | | | | | | | | | | - Jesse W Wilson
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yujia Ying
- Sun Yat-sen University, Guangzhou, China
| | - Jeffrey N Agar
- Northeastern University, Boston, MA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Paul O Danis
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Ying Ge
- University of Wisconsin-Madison, Madison, WI, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Neil L Kelleher
- Northwestern University, Evanston, IL, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Huilin Li
- Sun Yat-sen University, Guangzhou, China
| | - Joseph A Loo
- University of California, Los Angeles, CA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | | | - Ljiljana Paša-Tolić
- Pacific Northwest National Laboratory, Richland, WA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | | | | |
Collapse
|
8
|
Dutta T, Vlassakis J. Microscale measurements of protein complexes from single cells. Curr Opin Struct Biol 2024; 87:102860. [PMID: 38848654 DOI: 10.1016/j.sbi.2024.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Proteins execute numerous cell functions in concert with one another in protein-protein interactions (PPI). While essential in each cell, such interactions are not identical from cell to cell. Instead, PPI heterogeneity contributes to cellular phenotypic heterogeneity in health and diseases such as cancer. Understanding cellular phenotypic heterogeneity thus requires measurements of properties of PPIs such as abundance, stoichiometry, and kinetics at the single-cell level. Here, we review recent, exciting progress in single-cell PPI measurements. Novel technology in this area is enabled by microscale and microfluidic approaches that control analyte concentration in timescales needed to outpace PPI disassembly kinetics. We describe microscale innovations, needed technical capabilities, and methods poised to be adapted for single-cell analysis in the near future.
Collapse
Affiliation(s)
- Tanushree Dutta
- Department of Bioengineering, Rice University, Houston, TX 77005, USA. https://twitter.com/duttatanu1717
| | - Julea Vlassakis
- Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
9
|
Xu T, Wang Q, Wang Q, Sun L. Mass spectrometry-intensive top-down proteomics: an update on technology advancements and biomedical applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4664-4682. [PMID: 38973469 PMCID: PMC11257149 DOI: 10.1039/d4ay00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Proteoforms are all forms of protein molecules from the same gene because of variations at the DNA, RNA, and protein levels, e.g., alternative splicing and post-translational modifications (PTMs). Delineation of proteins in a proteoform-specific manner is crucial for understanding their biological functions. Mass spectrometry (MS)-intensive top-down proteomics (TDP) is promising for comprehensively characterizing intact proteoforms in complex biological systems. It has achieved substantial progress in technological development, including sample preparation, proteoform separations, MS instrumentation, and bioinformatics tools. In a single TDP study, thousands of proteoforms can be identified and quantified from a cell lysate. It has also been applied to various biomedical research to better our understanding of protein function in regulating cellular processes and to discover novel proteoform biomarkers of diseases for early diagnosis and therapeutic development. This review covers the most recent technological development and biomedical applications of MS-intensive TDP.
Collapse
Affiliation(s)
- Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Fischer MS, Rogers HT, Chapman EA, Chan HJ, Krichel B, Gao Z, Larson EJ, Ge Y. Online Mixed-Bed Ion Exchange Chromatography for Native Top-Down Proteomics of Complex Mixtures. J Proteome Res 2024; 23:2315-2322. [PMID: 38913967 PMCID: PMC11344481 DOI: 10.1021/acs.jproteome.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Native top-down mass spectrometry (nTDMS) allows characterization of protein structure and noncovalent interactions with simultaneous sequence mapping and proteoform characterization. The majority of nTDMS studies utilize purified recombinant proteins, with significant challenges hindering application to endogenous systems. To perform native top-down proteomics (nTDP), where endogenous proteins from complex biological systems are analyzed by nTDMS, it is essential to separate proteins under nondenaturing conditions. However, it remains difficult to achieve high resolution with MS-compatible online chromatography while preserving protein tertiary structure and noncovalent interactions. Herein, we report the use of online mixed-bed ion exchange chromatography (IEC) to enable separation of endogenous proteins from complex mixtures under nondenaturing conditions, preserving noncovalent interactions for nTDP analysis. We have successfully detected large proteins (>146 kDa) and identified endogenous metal-binding and oligomeric protein complexes in human heart tissue lysate. The use of a mixed-bed stationary phase allowed retention and elution of proteins over a wide range of isoelectric points without altering the sample or mobile phase pH. Overall, our method provides a simple online IEC-MS platform that can effectively separate proteins from complex mixtures under nondenaturing conditions and preserve higher-order structure for nTDP applications.
Collapse
Affiliation(s)
- Matthew S. Fischer
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Holden T. Rogers
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Emily A. Chapman
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Hsin-Ju Chan
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Boris Krichel
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Ave., Madison, WI, USA 53705
- School of Life Sciences, University of Siegen, Adolf-Reichwein Str. 2a, Siegen, Germany, 57076
| | - Zhan Gao
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Ave., Madison, WI, USA 53705
| | - Eli J. Larson
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Ave., Madison, WI, USA 53705
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin - 1111 Highland Ave., Madison, WI, USA 53705
| |
Collapse
|
11
|
Zhu Y, Liu Z, Liu J, Zhao H, Feng R, Shu K, Wang F, Chang C. Panda-UV Unlocks Deeper Protein Characterization with Internal Fragments in Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2024; 96:8474-8483. [PMID: 38739687 PMCID: PMC11140674 DOI: 10.1021/acs.analchem.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Ultraviolet photodissociation (UVPD) mass spectrometry unlocks insights into the protein structure and sequence through fragmentation patterns. While N- and C-terminal fragments are traditionally relied upon, this work highlights the critical role of internal fragments in achieving near-complete sequencing of protein. Previous limitations of internal fragment utilization, owing to their abundance and potential for random matching, are addressed here with the development of Panda-UV, a novel software tool combining spectral calibration, and Pearson correlation coefficient scoring for confident fragment assignment. Panda-UV showcases its power through comprehensive benchmarks on three model proteins. The inclusion of internal fragments boosts identified fragment numbers by 26% and enhances average protein sequence coverage to a remarkable 93% for intact proteins, unlocking the hidden region of the largest protein carbonic anhydrase II in model proteins. Notably, an average of 65% of internal fragments can be identified in multiple replicates, demonstrating the high confidence of the fragments Panda-UV provided. Finally, the sequence coverages of mAb subunits can be increased up to 86% and the complementary determining regions (CDRs) are nearly completely sequenced in a single experiment. The source codes of Panda-UV are available at https://github.com/PHOENIXcenter/Panda-UV.
Collapse
Affiliation(s)
- Yinlong Zhu
- Chongqing
Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences (Beijing),
Beijing Institute of Lifeomics, Beijing 102206, China
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Zheyi Liu
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialiang Liu
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of
Pharmacy, China Medical University, Shenyang 110122, China
| | - Heng Zhao
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rui Feng
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences (Beijing),
Beijing Institute of Lifeomics, Beijing 102206, China
| | - Kunxian Shu
- Chongqing
Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fangjun Wang
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Chang
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences (Beijing),
Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
12
|
Chapman EA, Li BH, Krichel B, Chan HJ, Buck KM, Roberts DS, Ge Y. Native Top-Down Mass Spectrometry for Characterizing Sarcomeric Proteins Directly from Cardiac Tissue Lysate. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:738-745. [PMID: 38422011 PMCID: PMC11098619 DOI: 10.1021/jasms.3c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Native top-down mass spectrometry (nTDMS) has emerged as a powerful structural biology tool that can localize post-translational modifications (PTMs), explore ligand-binding interactions, and elucidate the three-dimensional structure of proteins and protein complexes in the gas-phase. Fourier-transform ion cyclotron resonance (FTICR) MS offers distinct capabilities for nTDMS, owing to its ultrahigh resolving power, mass accuracy, and robust fragmentation techniques. Previous nTDMS studies using FTICR have mainly been applied to overexpressed recombinant proteins and protein complexes. Here, we report the first nTDMS study that directly analyzes human heart tissue lysate by direct infusion FTICR MS without prior chromatographic separation strategies. We have achieved comprehensive nTDMS characterization of cardiac contractile proteins that play critical roles in heart contraction and relaxation. Specifically, our results reveal structural insights into ventricular myosin light chain 2 (MLC-2v), ventricular myosin light chain 1 (MLC-1v), and alpha-tropomyosin (α-Tpm) in the sarcomere, the basic contractile unit of cardiac muscle. Furthermore, we verified the calcium (Ca2+) binding domain in MLC-2v. In summary, our nTDMS platform extends the application of FTICR MS to directly characterize the structure, PTMs, and metal-binding of endogenous proteins from heart tissue lysate without prior separation methods.
Collapse
Affiliation(s)
- Emily A. Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Brad H. Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Boris Krichel
- School of Life Sciences, University of Siegen, 57076, Germany
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Hsin-Ju Chan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kevin M. Buck
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
13
|
Chapman EA, Roberts DS, Tiambeng TN, Andrews J, Wang MD, Reasoner EA, Melby JA, Li BH, Kim D, Alpert AJ, Jin S, Ge Y. Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics. Nat Commun 2023; 14:8400. [PMID: 38110393 PMCID: PMC10728164 DOI: 10.1038/s41467-023-43321-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023] Open
Abstract
Protein complexes are highly dynamic entities that display substantial diversity in their assembly, post-translational modifications, and non-covalent interactions, allowing them to play critical roles in various biological processes. The heterogeneity, dynamic nature, and low abundance of protein complexes in their native states present challenges to study using conventional structural biology techniques. Here we develop a native nanoproteomics strategy for the enrichment and subsequent native top-down mass spectrometry (nTDMS) analysis of endogenous cardiac troponin (cTn) complex directly from human heart tissue. The cTn complex is enriched and purified using peptide-functionalized superparamagnetic nanoparticles under non-denaturing conditions to enable the isotopic resolution of cTn complex, revealing their complex structure and assembly. Moreover, nTDMS elucidates the stoichiometry and composition of the cTn complex, localizes Ca2+ binding domains, defines cTn-Ca2+ binding dynamics, and provides high-resolution mapping of the proteoform landscape. This native nanoproteomics strategy opens a paradigm for structural characterization of endogenous native protein complexes.
Collapse
Affiliation(s)
- Emily A Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jãán Andrews
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Man-Di Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily A Reasoner
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jake A Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brad H Li
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Donguk Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
14
|
Le J, Loo JA. Detection of Lipid-Bound Bacteriorhodopsin Trimer Complex Directly from Purple Membrane by Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2620-2624. [PMID: 37975648 PMCID: PMC10947533 DOI: 10.1021/jasms.3c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Native mass spectrometry (MS) was used to detect the membrane protein, bacteriorhodopsin (bR), in its 27 kDa monomeric form and trimeric assemblies directly from lipid-containing purple membranes (PMs) from the halophilic archaeon, Halobacterium salinarum. Trimer bR ion populations bound to lipid molecules were detected with n-octyl β-d-glucopyranoside as the solubilizing detergent; the use of octyl tetraethylene glycol monooctyl ether or n-dodecyl-β-d-maltopyranoside resulted in only detection of monomeric bR. The archaeal lipids phosphotidylglycerolphosphate methyl ester and 3-HSO3-Galp-β1,6-Manp-α1,2-Glcp-α1,1-sn-2,3-diphytanylglycerol were the only lipids in the PMs found to bind to bR, consistent with previous high-resolution structural studies. Removal of the lipids from the sample resulted in the detection of only the bR monomer, highlighting the importance of specific lipids for stabilizing the bR trimer. To the best of our knowledge, this is the first report of the detection of the bR trimer with resolved lipid-bound species by MS.
Collapse
Affiliation(s)
- Jessie Le
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095 USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| |
Collapse
|
15
|
Brandner S, Habeck T, Lermyte F. New Insights into the Intrinsic Electron-Based Dissociation Behavior of Cytochrome c Oligomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1908-1916. [PMID: 37227392 DOI: 10.1021/jasms.3c00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Between 2003 and 2017, four reports were published that demonstrated the intrinsic ability of the native iron-containing proteins cytochrome c and ferritin to undergo radical-based backbone fragmentation in the gas phase without the introduction of exogenous electrons. For cytochrome c in particular, this effect has so far only been reported to occur in the ion source, preventing the in-depth study of reactions occurring after gas-phase isolation of specific precursors. Here, we report the first observation of this intrinsic native electron capture dissociation behavior after quadrupole isolation of specific charge states of the cytochrome c dimer and trimer, providing direct experimental support for key aspects of the mechanism proposed 20 years ago. Furthermore, we provide evidence that, in contrast to some earlier proposals, these oligomeric states are formed in bulk solution rather than during the electrospray ionization process and that the observed fragmentation site preferences can be rationalized through the structure and interactions within these native oligomers rather than the monomer. We also show that the observed fragmentation pattern─and indeed, whether or not fragmentation occurs─is highly sensitive to the provenance and history of the protein samples, to the extent that samples can show distinct fragmentation behavior despite behaving identically in ion mobility experiments. This rather underexplored method therefore represents an exquisitely sensitive conformational probe and will hopefully receive more attention from the biomolecular mass spectrometry community in the future.
Collapse
Affiliation(s)
- Sarah Brandner
- Department of Chemistry, Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Tanja Habeck
- Department of Chemistry, Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Frederik Lermyte
- Department of Chemistry, Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| |
Collapse
|
16
|
Lutomski CA, El‐Baba TJ, Hinkle JD, Liko I, Bennett JL, Kalmankar NV, Dolan A, Kirschbaum C, Greis K, Urner LH, Kapoor P, Yen H, Pagel K, Mullen C, Syka JEP, Robinson CV. Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G Protein-Coupled Receptors. Angew Chem Int Ed Engl 2023; 62:e202305694. [PMID: 37329506 PMCID: PMC7615181 DOI: 10.1002/anie.202305694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/20/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023]
Abstract
Membrane proteins are challenging to analyze by native mass spectrometry (MS) as their hydrophobic nature typically requires stabilization in detergent micelles that are removed prior to analysis via collisional activation. There is however a practical limit to the amount of energy which can be applied, which often precludes subsequent characterization by top-down MS. To overcome this barrier, we have applied a modified Orbitrap Eclipse Tribrid mass spectrometer coupled to an infrared laser within a high-pressure linear ion trap. We show how tuning the intensity and time of incident photons enables liberation of membrane proteins from detergent micelles. Specifically, we relate the ease of micelle removal to the infrared absorption of detergents in both condensed and gas phases. Top-down MS via infrared multiphoton dissociation (IRMPD), results in good sequence coverage enabling unambiguous identification of membrane proteins and their complexes. By contrasting and comparing the fragmentation patterns of the ammonia channel with two class A GPCRs, we identify successive cleavage of adjacent amino acids within transmembrane domains. Using gas-phase molecular dynamics simulations, we show that areas prone to fragmentation maintain aspects of protein structure at increasing temperatures. Altogether, we propose a rationale to explain why and where in the protein fragment ions are generated.
Collapse
Affiliation(s)
- Corinne A. Lutomski
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Tarick J. El‐Baba
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | | | | | - Jack L. Bennett
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Neha V. Kalmankar
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Andrew Dolan
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Carla Kirschbaum
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Kim Greis
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Leonhard H. Urner
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityDortmund44227Germany
| | | | - Hsin‐Yung Yen
- OMass TherapeuticsOxfordOX4 2GXUK
- Institute of Biological ChemistryAcademia SinicaTaipei115Taiwan
| | - Kevin Pagel
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | | | | | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
17
|
Lutomski CA, El‐Baba TJ, Hinkle JD, Liko I, Bennett JL, Kalmankar NV, Dolan A, Kirschbaum C, Greis K, Urner LH, Kapoor P, Yen H, Pagel K, Mullen C, Syka JEP, Robinson CV. Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G Protein-Coupled Receptors. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202305694. [PMID: 38516403 PMCID: PMC10953453 DOI: 10.1002/ange.202305694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 03/23/2024]
Abstract
Membrane proteins are challenging to analyze by native mass spectrometry (MS) as their hydrophobic nature typically requires stabilization in detergent micelles that are removed prior to analysis via collisional activation. There is however a practical limit to the amount of energy which can be applied, which often precludes subsequent characterization by top-down MS. To overcome this barrier, we have applied a modified Orbitrap Eclipse Tribrid mass spectrometer coupled to an infrared laser within a high-pressure linear ion trap. We show how tuning the intensity and time of incident photons enables liberation of membrane proteins from detergent micelles. Specifically, we relate the ease of micelle removal to the infrared absorption of detergents in both condensed and gas phases. Top-down MS via infrared multiphoton dissociation (IRMPD), results in good sequence coverage enabling unambiguous identification of membrane proteins and their complexes. By contrasting and comparing the fragmentation patterns of the ammonia channel with two class A GPCRs, we identify successive cleavage of adjacent amino acids within transmembrane domains. Using gas-phase molecular dynamics simulations, we show that areas prone to fragmentation maintain aspects of protein structure at increasing temperatures. Altogether, we propose a rationale to explain why and where in the protein fragment ions are generated.
Collapse
Affiliation(s)
- Corinne A. Lutomski
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Tarick J. El‐Baba
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | | | | | - Jack L. Bennett
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Neha V. Kalmankar
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Andrew Dolan
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Carla Kirschbaum
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Kim Greis
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Leonhard H. Urner
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityDortmund44227Germany
| | | | - Hsin‐Yung Yen
- OMass TherapeuticsOxfordOX4 2GXUK
- Institute of Biological ChemistryAcademia SinicaTaipei115Taiwan
| | - Kevin Pagel
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | | | | | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
18
|
Lermyte F, Habeck T, Brown K, Des Soye B, Lantz C, Zhou M, Alam N, Hossain MA, Jung W, Keener J, Volny M, Wilson J, Ying Y, Agar J, Danis P, Ge Y, Kelleher N, Li H, Loo J, Marty M, Pasa-Tolic L, Sandoval W. Top-down mass spectrometry of native proteoforms and their complexes: A community study. RESEARCH SQUARE 2023:rs.3.rs-3228472. [PMID: 37674709 PMCID: PMC10479449 DOI: 10.21203/rs.3.rs-3228472/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The combination of native electrospray ionisation with top-down fragmentation in mass spectrometry allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and co-factors. While this approach is powerful, both native mass spectrometry and top-down mass spectrometry are not yet well standardised, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics (CTDP) initiated a study to develop and test protocols for native mass spectrometry combined with top-down fragmentation of proteins and protein complexes across eleven instruments in nine laboratories. The outcomes are summarised in this report to provide robust benchmarks and a valuable entry point for the scientific community.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jeffrey Agar
- Department of Chemistry and Chemical Biology, Northeastern University
| | | | - Ying Ge
- University of Wisconsin-Madison
| | | | | | | | | | | | | |
Collapse
|
19
|
Shoff TA, Julian RR. Fragment Ion Abundance Reveals Information about Structure and Charge Localization in Highly Charged Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37477985 PMCID: PMC10401701 DOI: 10.1021/jasms.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Top-down mass spectrometry (MS) is a versatile tool that has been employed to investigate both protein sequence and structure. Although a variety of different fragmentation methods are available in top-down MS that can potentially yield structural information, quantifying differences between spectra remains challenging. Herein, we show that subtle differences in spectra produced by a variety of fragmentation methods are surprisingly sensitive to protein structure and/or charge localization, even in highly unfolded proteins observed in high charge states. In addition to exposing information about the protein structure, differences in fragmentation also reveal insight into the mechanisms underlying the dissociation methods themselves. The results further reveal that small changes in experimental parameters (such as the addition of methanol instead of acetonitrile) lead to changes in structure that are reflected in statistically reproducible differences in dissociation. Collisional annealing of structurally dissimilar ions in the gas phase eventually leads to dissociation spectra that are indistinguishable, suggesting that structural differences can be erased by sufficient thermal activation. Additional experiments illustrate that identical charge states of the same protein can be distinguished if those produced directly by electrospray are compared to ions manipulated by in vacuo proton-transfer charge reduction. Overall, the results show that subtle differences in both three-dimensional structure and charge-site localization can influence the abundance of fragment ions produced by top-down MS, including dissociation methods not typically thought to be structurally sensitive.
Collapse
Affiliation(s)
- Thomas A Shoff
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
20
|
Chapman EA, Roberts DS, Tiambeng TN, Andrews J, Wang MD, Reasoner EA, Melby JA, Li BH, Kim D, Alpert AJ, Jin S, Ge Y. Structure and dynamics of endogenous protein complexes in human heart tissue captured by native nanoproteomics. RESEARCH SQUARE 2023:rs.3.rs-3108087. [PMID: 37461709 PMCID: PMC10350235 DOI: 10.21203/rs.3.rs-3108087/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Protein complexes are highly dynamic entities that display substantial diversity in their assembly, post-translational modifications, and non-covalent interactions, allowing them to play critical roles in various biological processes. The heterogeneity, dynamic nature, and low abundance of protein complexes in their native states present tremendous challenges to study using conventional structural biology techniques. Here we develop a "native nanoproteomics" strategy for the native enrichment and subsequent native top-down mass spectrometry (nTDMS) of low-abundance protein complexes. Specifically, we demonstrate the first comprehensive characterization of the structure and dynamics of cardiac troponin (cTn) complexes directly from human heart tissue. The endogenous cTn complex is effectively enriched and purified using peptide-functionalized superparamagnetic nanoparticles under non-denaturing conditions to enable the isotopic resolution of cTn complexes, revealing their complex structure and assembly. Moreover, nTDMS elucidates the stoichiometry and composition of the heterotrimeric cTn complex, localizes Ca2+ binding domains (II-IV), defines cTn-Ca2+ binding dynamics, and provides high-resolution mapping of the proteoform landscape. This native nanoproteomics strategy opens a new paradigm for structural characterization of low-abundance native protein complexes.
Collapse
Affiliation(s)
- Emily A. Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Timothy N. Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jãán Andrews
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Man-Di Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Emily A. Reasoner
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Brad H. Li
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Donguk Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
21
|
Chapman EA, Roberts DS, Tiambeng TN, Andrews J, Wang MD, Reasoner EA, Melby JA, Li BH, Kim D, Alpert AJ, Jin S, Ge Y. Structure and dynamics of endogenous protein complexes in human heart tissue captured by native nanoproteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544817. [PMID: 37398031 PMCID: PMC10312745 DOI: 10.1101/2023.06.13.544817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Protein complexes are highly dynamic entities that display substantial diversity in their assembly, post-translational modifications, and non-covalent interactions, allowing them to play critical roles in various biological processes. The heterogeneity, dynamic nature, and low abundance of protein complexes in their native states present tremendous challenges to study using conventional structural biology techniques. Here we develop a "native nanoproteomics" strategy for the native enrichment and subsequent native top-down mass spectrometry (nTDMS) of low-abundance protein complexes. Specifically, we demonstrate the first comprehensive characterization of the structure and dynamics of cardiac troponin (cTn) complexes directly from human heart tissue. The endogenous cTn complex is effectively enriched and purified using peptide-functionalized superparamagnetic nanoparticles under non-denaturing conditions to enable the isotopic resolution of cTn complexes, revealing their complex structure and assembly. Moreover, nTDMS elucidates the stoichiometry and composition of the heterotrimeric cTn complex, localizes Ca2+ binding domains (II-IV), defines cTn-Ca2+ binding dynamics, and provides high-resolution mapping of the proteoform landscape. This native nanoproteomics strategy opens a new paradigm for structural characterization of low-abundance native protein complexes.
Collapse
|
22
|
Mietzsch M, Liu W, Ma K, Bennett A, Nelson AR, Gliwa K, Chipman P, Fu X, Bechler S, McKenna R, Viner R. Production and characterization of an AAV1-VP3-only capsid: An analytical benchmark standard. Mol Ther Methods Clin Dev 2023; 29:460-472. [PMID: 37273903 PMCID: PMC10238842 DOI: 10.1016/j.omtm.2023.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Adeno-associated viruses (AAVs) are non-enveloped ssDNA icosahedral T = 1 viruses used as vectors for clinical gene delivery. Currently, there are over 200 AAV-related clinical trials and six approved biologics on the market. As such new analytical methods are continually being developed to characterize and monitor the quality and purity of manufactured AAV vectors, these include ion-exchange chromatography and Direct Mass Technology. However, these methods require homogeneous analytical standards with a high molecular weight standard comparable to the mass of an AAV capsid. Described here is the design, production, purification, characterization, and the cryo-electron microscopy structure of an AAV1-VP3-only capsid that fulfills this need as a calibrant to determine capsid mass, charge, homogeneity, and transgene packaging characteristics.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Weijing Liu
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA 95134, USA
| | - Ke Ma
- Thermo Fisher Scientific, 490 Lakeside Dr., Sunnyvale, CA 94085, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Austin R. Nelson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Keely Gliwa
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xiaofeng Fu
- Biological Science Imaging Resource, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
| | - Shane Bechler
- Thermo Fisher Scientific, 490 Lakeside Dr., Sunnyvale, CA 94085, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rosa Viner
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA 95134, USA
| |
Collapse
|
23
|
Larson EJ, Pergande MR, Moss ME, Rossler KJ, Wenger RK, Krichel B, Josyer H, Melby JA, Roberts DS, Pike K, Shi Z, Chan HJ, Knight B, Rogers HT, Brown KA, Ong IM, Jeong K, Marty MT, McIlwain SJ, Ge Y. MASH Native: a unified solution for native top-down proteomics data processing. Bioinformatics 2023; 39:btad359. [PMID: 37294807 PMCID: PMC10283151 DOI: 10.1093/bioinformatics/btad359] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/13/2023] [Accepted: 06/07/2023] [Indexed: 06/11/2023] Open
Abstract
MOTIVATION Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. RESULTS We have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a "one-stop shop" for characterizing both native protein complexes and proteoforms. AVAILABILITY AND IMPLEMENTATION The MASH Native app, video tutorials, written tutorials, and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHSoftware.php. All data files shown in user tutorials are included with the MASH Native software in the download .zip file.
Collapse
Affiliation(s)
- Eli J Larson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Melissa R Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Michelle E Moss
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Kalina J Rossler
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - R Kent Wenger
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Boris Krichel
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Harini Josyer
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Jake A Melby
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Kyndalanne Pike
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Zhuoxin Shi
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Hsin-Ju Chan
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Bridget Knight
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Holden T Rogers
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI 53705, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Kyowon Jeong
- Department of Applied Bioinformatics, University of Tübingen, Tübingen 72704, Germany
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85719, United States
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI 53705, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, United States
| |
Collapse
|
24
|
Wu R, Benzenberg LR, Svingou D, Zenobi R. The Structure of Cyclic Neuropeptide Somatostatin and Octapeptide Octreotide in the Presence of Copper Ions: Insights from Transition Metal Ion FRET and Native Ion Mobility-Mass Spectrometry. J Am Chem Soc 2023; 145:10542-10547. [PMID: 37146120 DOI: 10.1021/jacs.2c13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The conformation and function of somatostatin (SST), a cyclic neuropeptide, was recently found to be altered in the presence of Cu(II) ions, which leads to self-aggregation and loss of biological function as a neurotransmitter. However, the impact of Cu(II) ions on the structure and function of SST is not fully understood. In this work, transition metal ion Förster resonance energy transfer (tmFRET) and native ion mobility-mass spectrometry (IM-MS) were utilized to study the structures of well-defined gas-phase ions of SST and of a smaller analogue, octreotide (OCT). The tmFRET results suggest two binding sites of Cu(II) ions in both native-like SST and OCT ions, either in close proximity to the disulfide bond or complexed by two aromatic residues, consistent with results obtained from collision-induced dissociation (CID). The former binding site was reported to initiate aggregation of SST, while the latter binding site could directly affect the essential motif for receptor binding and therefore impair the biological function of SST and OCT when bound to SST receptors. Our results demonstrate that tmFRET is capable of locating transition metal ion binding sites in neuropeptides. Furthermore, multiple distance constraints (tmFRET) and global shape (IM-MS) provide additional structural insights of SST and OCT ions upon metal binding, which is related to the self-aggregation mechanisms and overall biological functions.
Collapse
Affiliation(s)
- Ri Wu
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Lukas R Benzenberg
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Despoina Svingou
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
25
|
Reid DJ, Thibert S, Zhou M. Dissecting the structural heterogeneity of proteins by native mass spectrometry. Protein Sci 2023; 32:e4612. [PMID: 36851867 PMCID: PMC10031758 DOI: 10.1002/pro.4612] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
A single gene yields many forms of proteins via combinations of posttranscriptional/posttranslational modifications. Proteins also fold into higher-order structures and interact with other molecules. The combined molecular diversity leads to the heterogeneity of proteins that manifests as distinct phenotypes. Structural biology has generated vast amounts of data, effectively enabling accurate structural prediction by computational methods. However, structures are often obtained heterologously under homogeneous states in vitro. The lack of native heterogeneity under cellular context creates challenges in precisely connecting the structural data to phenotypes. Mass spectrometry (MS) based proteomics methods can profile proteome composition of complex biological samples. Most MS methods follow the "bottom-up" approach, which denatures and digests proteins into short peptide fragments for ease of detection. Coupled with chemical biology approaches, higher-order structures can be probed via incorporation of covalent labels on native proteins that are maintained at the peptide level. Alternatively, native MS follows the "top-down" approach and directly analyzes intact proteins under nondenaturing conditions. Various tandem MS activation methods can dissect the intact proteins for in-depth structural elucidation. Herein, we review recent native MS applications for characterizing heterogeneous samples, including proteins binding to mixtures of ligands, homo/hetero-complexes with varying stoichiometry, intrinsically disordered proteins with dynamic conformations, glycoprotein complexes with mixed modification states, and active membrane protein complexes in near-native membrane environments. We summarize the benefits, challenges, and ongoing developments in native MS, with the hope to demonstrate an emerging technology that complements other tools by filling the knowledge gaps in understanding the molecular heterogeneity of proteins.
Collapse
Affiliation(s)
- Deseree J. Reid
- Chemical and Biological Signature SciencesPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Stephanie Thibert
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Mowei Zhou
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| |
Collapse
|