1
|
Otsuki S, Kanemoto K, Martos DC, Kwon E, Wencel-Delord J, Yoshikai N. Diazomethyl-λ 3-iodane meets aryne: dipolar cycloaddition and C-to-N iodane shift leading to indazolyl-λ 3-iodanes. Chem Sci 2025; 16:8053-8059. [PMID: 40206543 PMCID: PMC11976445 DOI: 10.1039/d5sc00266d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Diazomethyl-λ3-iodanes have recently emerged as carbyne equivalents in organic synthesis, enabling the construction of multi-substituted carbon centers through strategic sequential activation of the diazo and iodane functional groups. Distinct from such reaction modes, we report here on the reactivity of diazomethyl-λ3-iodanes as iodane-bound 1,3-dipoles toward arynes. Equipped with bis(trifluoromethyl)benzyl alcohol-based benziodoxole (BX) moiety, diazomethyl-λ3-iodanes undergo annulation with arynes generated from ortho-silylaryl triflates and cyclic diarylhalonium salts, resulting in indazolyl-λ3-iodanes through [3 + 2] cycloaddition and carbon-to-nitrogen iodane migration. DFT calculations reveal that diazomethyl-BX prefers [3 + 2] cycloaddition with aryne over aryne insertion into the carbon-iodine(iii) bond (carboiodanation) and that the subsequent iodane migration proceeds through two consecutive 1,5-iodane shifts. The utility of these indazolyl-BXs as indazole-transfer agents has been demonstrated by α-functionalization of N,N-dimethylaniline derivatives.
Collapse
Affiliation(s)
- Shinya Otsuki
- Graduate School of Pharmaceutical Sciences, Tohoku University Sendai 980-8578 Japan
| | - Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University Sendai 980-8578 Japan
| | - Daniel Carter Martos
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University Sendai 980-8578 Japan
- Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science, Tohoku University Sendai 980-8578 Japan
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
- Institute of Organic Chemistry, JMU Würzburg Am Hubland Würzburg Germany
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University Sendai 980-8578 Japan
| |
Collapse
|
2
|
Ranga PK, Fatma S, Athira MP, Velloth A, Ahmad F, Wadhave AB, Kumar V, Saini P, Anand RV. Tris(aryl)cyclopropenium Ion as Organic Lewis Acid Catalyst in Carbonyl Activation Reactions. Chem Asian J 2025:e202500131. [PMID: 40298038 DOI: 10.1002/asia.202500131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Although, in recent years, cyclopropenium salts have been explored as phase-transfer catalysts, electro-photocatalysts, H-bond donor catalysts, etc., and until now, they have not been utilized directly as Lewis acid catalysts in organic transformations. In this article, we demonstrate a "Proof of Concept" that the tris(aryl)cyclopropenium (TAC) carbocation could be utilized as an organic Lewis acid catalyst in some of the reactions involving carbonyl activation such as 1,2-addition reactions of aldehydes, 1,4-conjugate addition reactions of enones, and 1,6-vinylogous conjugate addition of dienones (p-quinone methides). The mode of activation of carbonyl group by cyclopropenium ion has been studied using NMR titrations and UV kinetics and further supported by computational calculations.
Collapse
Affiliation(s)
- Pavit Kumar Ranga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Mangalassery P Athira
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Akshaykumar B Wadhave
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Vaibhav Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Piyush Saini
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| |
Collapse
|
3
|
Palomo E, Krech A, Hsueh YJ, Li Z, Suero MG. Rh-Catalyzed Enantioselective Aryl C-H Bond Cyclopropylation. J Am Chem Soc 2025; 147:13120-13125. [PMID: 40210211 PMCID: PMC12022978 DOI: 10.1021/jacs.5c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Herein, we disclose the discovery and development of a site-, regio-, diastereo-, and enantioselective aryl C-H bond cyclopropylation using diazomethyl hypervalent iodine reagents, styrenes, and paddlewheel dirhodium carboxylate catalysts. A key aspect of this work was the catalytic generation of a chiral Rh(II) carbene through an electrophilic aromatic substitution with chiral Rh(II) carbynoids. The strategy allows the construction of cyclopropane rings using aryl C-H bonds from aromatic feedstocks and drug molecules and promises to reach an unexplored "cyclopropanated" chemical space highly difficult to reach by current strategies.
Collapse
Affiliation(s)
- Eric Palomo
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Anastasiya Krech
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Yu Jen Hsueh
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Zexian Li
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Pg Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
Wu FP, Tyler JL, Glorius F. Diversity-Generating Skeletal Editing Transformations. Acc Chem Res 2025; 58:893-906. [PMID: 40042370 DOI: 10.1021/acs.accounts.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
ConspectusSkeletal editing, as a synthetic tool, offers the unique potential to selectively and efficiently modify the core skeleton of a target molecule at a late-stage. The main benefit of such transformations is the rapid exploration of the chemical space around lead compounds without necessitating a de novo synthesis for each new molecule. However, many skeletal editing transformations are inherently restricted to generating a single product from a single starting compound, limiting the potential for diversification, a concept central to expediting structure-activity relationship (SAR) investigations. In this Account, we describe our efforts to develop novel skeletal editing transformations in which a modification to the central motif of a molecule is performed simultaneously with the incorporation of additional functionality that can be easily varied through a judicious choice of the reagents. Specifically, we successfully developed an α-iodonium diazo-based carbynyl radical equivalent reagent that, under photoredox conditions, could facilitate the ring-expansion of indene scaffolds while enabling the insertion of over ten different functionalized carbon atoms into the corresponding naphthalene products. This concept was later extended to the design of an atomic carbon equivalent reagent that could promote mild and selective Ciamician-Dennstedt-type indole ring-expansion reactions, while simultaneously installing an oxime ester handle that could undergo further functionalization. Furthermore, we highlight recent work from our group on multiple-atom insertion reactions, namely, the development of a photocatalyzed De Mayo reaction for the ring-expansion of cyclic ketones and a photocatalyzed dearomative ring-expansion of thiophenes via small-ring insertion. In both of these cases, multiple products can be potentially accessed from a single starting material upon variation of the insertion reagent. The diversity-generating skeletal editing strategy could also be applied to single-atom transmutation, as demonstrated by the development of a nitrogen-to-functionalized carbon atom transmutation reaction to convert pyridine to benzene rings. Here, the desired transformation was achieved via a sequence of pyridine ring-opening, Horner-Wadsworth-Emmons (HWE) olefination, and ring-closure, with a judicious choice of the HWE reagent allowing the installation of a wide variety of versatile functional groups. Finally, an energy transfer-mediated quinoline ring-contraction is discussed, specifically with reference to the ways in which it does and does not fit the criteria of a skeletal editing reaction. Although formal atom deletion transformations are typically restricted to single products from each discrete substrate, this [2 + 2] cycloaddition/rearrangement cascade also involves the incorporation of an alkene into the molecule and introduces a point of variation that can be exploited for diversity generation. We hope to not only highlight the transformations reported herein but also inspire further research into this synthetic strategy to access new classes of skeletal editing transformations that, through rapid diversity generation, provide the potential to expedite SAR investigations.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Organisch-Chemisches Institut, University of Münster, 48149 Münster, Germany
| | - Jasper L Tyler
- Organisch-Chemisches Institut, University of Münster, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster, 48149 Münster, Germany
| |
Collapse
|
5
|
Yang X, Zhou X, Hu W, Qian Y. Asymmetric multi-component trifunctionalization reactions with α-Halo Rh-carbenes. Nat Commun 2025; 16:1434. [PMID: 39920127 PMCID: PMC11806023 DOI: 10.1038/s41467-025-56446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Multi-component multi-functionalization reactions involving active intermediates are powerful tools for rapidly generating a wide array of compounds. Metal carbynoids, with their distinct reactivity, hold great promise for developing synthetic methodologies. However, their application in catalytic transfer reactions has been hindered by the limited availability of suitable precursors. In this study, we investigate the catalytic potential of α-halo Rh-carbenes, leveraging the concept of metal carbynoids in multi-functionalization reactions. Through a chiral phosphoric acid-catalyzed asymmetric trifunctionalization, we have developed a method for synthesizing a variety of chiral α-cyclic ketal β-amino esters with high yields and excellent enantioselectivity. Our extensive experimental and computational studies reveal that α-halo Rh-carbenes exhibit carbynoid properties, which facilitate the transformation into functionalized Fischer-type Rh-carbenes through the decomposition of the C-halo bond.
Collapse
Affiliation(s)
- Xiaoyan Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Zhou
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, China
| | - Wenhao Hu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Yu Qian
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Velichko V, Moi D, Soddu F, Scipione R, Podda E, Luridiana A, Cambie D, Secci F, Cabua MC. Two-step continuous flow-driven synthesis of 1,1-cyclopropane aminoketones. Chem Commun (Camb) 2025; 61:1391-1394. [PMID: 39711176 DOI: 10.1039/d4cc04089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The continuous flow telescoped synthesis of 1,1-cyclopropane aminoketones was achieved by optimizing the photocyclization of 1,2-diketones to 2-hydroxycylobutanones (HCBs) and their reaction with aryl- and alkylamines, via tandem condensation C4-C3-ring contraction reaction. With the achieved operational conditions, we were able to obtain a library of cyclopropylamines with good chemical yields, high productivity, and short residence times.
Collapse
Affiliation(s)
- Viktoria Velichko
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Davide Moi
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Francesco Soddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Roberto Scipione
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Enrico Podda
- Centro Servizi d'Ateneo per la Ricerca CeSAR, 09042, Monserrato (Cagliari), Italy
| | - Alberto Luridiana
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Dario Cambie
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems Department, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Francesco Secci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Maria Chiara Cabua
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| |
Collapse
|
7
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
8
|
Smyrnov V, Waser J. Photocatalytic Decarboxylative Functionalization of Cyclopropenes via Cyclopropenium Cation Intermediates. Angew Chem Int Ed Engl 2024; 63:e202404265. [PMID: 38802318 DOI: 10.1002/anie.202404265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A photocatalytic decarboxylative functionalization of cyclopropenes is reported. Starting from a broad range of redox-active ester-substituted cyclopropenes, cyclopropenylphthalimides can be synthesized in the absence of a nucleophile. Alternatively, different carbon and heteroatom nucleophiles can be introduced. The transformation proceeds most probably through the formation of an aromatic cyclopropenium cation, followed by trapping with the nucleophiles.
Collapse
Affiliation(s)
- Vladyslav Smyrnov
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
9
|
Li X, Wodrich MD, Waser J. Accessing elusive σ-type cyclopropenium cation equivalents through redox gold catalysis. Nat Chem 2024; 16:901-912. [PMID: 38783040 PMCID: PMC11164686 DOI: 10.1038/s41557-024-01535-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Cyclopropenes are the smallest unsaturated carbocycles. Removing one substituent from cyclopropenes leads to cyclopropenium cations (C3+ systems, CPCs). Stable aromatic π-type CPCs were discovered by Breslow in 1957 by removing a substituent on the aliphatic position. In contrast, σ-type CPCs-formally accessed by removing one substituent on the alkene-are unstable and relatively unexplored. Here we introduce electrophilic cyclopropenyl-gold(III) species as equivalents of σ-type CPCs, which can then react with terminal alkynes and vinylboronic acids. With catalyst loadings as low as 2 mol%, the synthesis of highly functionalized alkynyl- or alkenyl-cyclopropenes proceeded under mild conditions. A class of hypervalent iodine reagents-the cyclopropenyl benziodoxoles (CpBXs)-enabled the direct oxidation of gold(I) to gold(III) with concomitant transfer of a cyclopropenyl group. This protocol was general, tolerant to numerous functional groups and could be used for the late-stage modification of complex natural products, bioactive molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Xiangdong Li
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Wodrich
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
11
|
Zhao WW, Tian MY, Zhou YL, Liu LJ, Tian SF, He CY, Yang XZ, Chen YZ, Han WY. Trifluoromethyl Rhodium-Carbynoid in [2+1+2] Cycloadditions. Angew Chem Int Ed Engl 2024; 63:e202318887. [PMID: 38237082 DOI: 10.1002/anie.202318887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Indexed: 02/24/2024]
Abstract
Trifluoromethyl cationic carbyne (CF3 C+ :) possessing dual carbene-carbocation behavior emulated as trifluoromethyl metal-carbynoid (CF3 C+ =M) has not been explored yet, and its reaction characteristics are unknown. Herein, a novel α-diazotrifluoroethyl sulfonium salt was prepared and used in Rh-catalyzed three-component [2+1+2] cycloadditions for the first time with commercially available N-fused heteroarenes and nitriles, yielding a series of imidazo[1,5-a] N-heterocycles that are of interest in medicinal chemistry, in which the insertion of trifluoromethyl Rh-carbynoid (CF3 C+ =Rh) into C=N bonds of N-fused heteroarenes was involved. This strategy demonstrates synthetic applications in late-stage modification of pharmaceuticals, construction of CD3 -containing N-heterocycles, gram-scale experiments, and synthesis of phosphodiesterase 10A inhibitor analog. These highly valuable and modifiable imidazo[1,5-a] N-heterocycles exhibit good antitumor activity in vitro, thus demonstrating their potential applications in medicinal chemistry.
Collapse
Affiliation(s)
- Wen-Wen Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Meng-Yang Tian
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Yi-Lin Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Lu-Jie Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Shao-Fang Tian
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Xing-Zhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, 650201, Kunming, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| |
Collapse
|
12
|
Wu FP, Chintawar CC, Lalisse R, Mukherjee P, Dutta S, Tyler J, Daniliuc CG, Gutierrez O, Glorius F. Ring expansion of indene by photoredox-enabled functionalized carbon-atom insertion. Nat Catal 2024; 7:242-251. [PMID: 39512751 PMCID: PMC11540421 DOI: 10.1038/s41929-023-01089-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/29/2023] [Indexed: 11/15/2024]
Abstract
Skeletal editing has received unprecedented attention as an emerging technology for the late-stage manipulation of molecular scaffolds. The direct achievement of functionalized carbon-atom insertion in aromatic rings is challenging. Despite ring-expanding carbon-atom insertion reactions, such as the Ciamician-Dennstedt re-arrangement, being performed for more than 140 years, only a few relevant examples of such transformations have been reported, with these limited to the installation of halogen, ester and phenyl groups. Here we describe a photoredox-enabled functionalized carbon-atom insertion reaction into indene. We disclose the utilization of a radical carbyne precursor that facilitates the insertion of carbon atoms bearing a variety of functional groups, including trifluoromethyl, ester, phosphate ester, sulfonate ester, sulfone, nitrile, amide, aryl ketone and aliphatic ketone fragments to access a library of 2-substituted naphthalenes. The application of this methodology to the skeletal editing of molecules of pharmaceutical relevance highlights its utility.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Remy Lalisse
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- These authors contributed equally: Remy Lalisse, Poulami Mukherjee
| | - Poulami Mukherjee
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- These authors contributed equally: Remy Lalisse, Poulami Mukherjee
| | - Subhabrata Dutta
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Jasper Tyler
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| |
Collapse
|
13
|
Zhang C, Wan JP. Synthesis of Hypervalent Iodine Diazo Compounds and Their Application in Organic Synthesis. Chemistry 2024; 30:e202302718. [PMID: 37846841 DOI: 10.1002/chem.202302718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
Diazomethyl-substituted iodine(III) compounds with electron-withdrawing groups (EWG) connected to diazo methyl center were a type of donor-acceptor diazo compounds with potential reaction abilities similar to ordinary diazo compounds. Although several diazomethyl-substituted iodine(III) compounds were synthesized and used in the nucleophilic substitution reactions as early as 1994, the synthesis and application of new iodine(III) diazo compounds have only been reported to a certain extent in recent years. In the presence of rhodium catalyst, photocatalyst, or nucleophiles, diazomethyl-substituted iodine(III) compounds can be converted into rhodium-carbenes, diazomethyl radicals, ester radicals or nucleophilic intermediates, which can be used as key intermediates for the formation of chemical bonds. The aim of this review is to give an overview of diazomethyl-substituted iodine(III) compounds in organic synthesis.
Collapse
Affiliation(s)
- Cai Zhang
- Department of Safety Supervision and Management, Chongqing Vocational Institute of Safety Technology, 583 Anqing road, Wanzhou district, 404020, Chongqing, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, 330022, Nanchang, China
| |
Collapse
|
14
|
Zhang B, Erb FR, Vasilopoulos A, Voight EA, Alexanian EJ. General Synthesis of N-Alkylindoles from N, N-Dialkylanilines via [4 + 1] Annulative Double C-H Functionalization. J Am Chem Soc 2023; 145:26540-26544. [PMID: 38029320 PMCID: PMC10789186 DOI: 10.1021/jacs.3c10751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Strategies enabling the construction of indoles and novel polycyclic heterocycles from simple building blocks streamline syntheses in synthetic and medicinal chemistry. Herein, we report a C-H functionalization approach to N-alkylindoles proceeding via a double, site-selective C(sp3)-H/C(sp2)-H [4 + 1] annulation of readily accessed N,N-dialkylanilines. This protocol features a site-selective hydrogen atom transfer by a tuned N-tBu amidyl radical and addition of a sulfonyl diazo coupling partner, which promotes highly site-selective homolytic aromatic substitution of the (hetero)aromatic core. Mild decarboxylation of the annulation product enables the overall introduction of a carbyne equivalent into the N,N-dialkylaniline scaffold. Furthermore, the site-selectivity and mild conditions of the indolization facilitate direct access to N-alkyl indole scaffolds in late-stage functionalization (LSF) settings.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Frederik R. Erb
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | | | - Eric A. Voight
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
15
|
Qian Y, Tang J, Zhou X, Luo J, Yang X, Ke Z, Hu W. Enantioselective Multifunctionalization with Rh Carbynoids. J Am Chem Soc 2023; 145:26403-26411. [PMID: 37993266 DOI: 10.1021/jacs.3c10460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Multifunctionalization from the interception of active intermediates is an attractive synthetic strategy for the efficient construction of complex molecular scaffolds in an atom and step economic fashion. However, the design of reactions involving metal carbynoids that exhibit carbene/carbocation behavior is currently limited, and developing catalyst-controlled highly enantioselective versions poses significant challenges. In this study, we present the first asymmetric trifunctionalization reactions with rhodium carbynoids. This reaction unveils the distinctive reactivity of the carbynoid precursor, enabling it to react with simultaneously two nucleophiles and one electrophile. This process involves the formation of two distinct carbene ylides with the alcohol/carbamate and the trapping of one ylide with the imine, resulting in the formation of three new bonds. Furthermore, this strategy allows for the divergent synthesis of a wide array of β-amino esters in high yields and exceptional enantioselectivity.
Collapse
Affiliation(s)
- Yu Qian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jie Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiaoyu Zhou
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiaoyan Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
16
|
Tu HF, Jeandin A, Bon C, Brocklehurst C, Lima F, Suero MG. Late-Stage Aryl C-H Bond Cyclopropenylation with Cyclopropenium Cations. Angew Chem Int Ed Engl 2023; 62:e202308379. [PMID: 37459194 DOI: 10.1002/anie.202308379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Herein, we disclose the first regio-, site- and chemoselective late-stage (hetero)aryl C-H bond cyclopropenylation with cyclopropenium cations (CPCs). The process is fast, operationally simple and shows an excellent functional group tolerance in densely-functionalized drug molecules, natural products, agrochemicals and fluorescent dyes. Moreover, we discovered that the installation of the cyclopropene ring in drug molecules could not only be used to shield against metabolic instability but also as a synthetic tool to reach medicinally-relevant sp3 -rich scaffolds exploiting the highly-strained nature of the cyclopropene ring with known transformations.
Collapse
Affiliation(s)
- Hang-Fei Tu
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007, Tarragona, Spain
| | - Aliénor Jeandin
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel.lí Domingo, 1, 43007, Tarragona, Spain
| | - Corentin Bon
- Global Discovery Chemistry, Novartis Institutes of BioMedical Research, 4056, Basel, Switzerland
| | - Cara Brocklehurst
- Global Discovery Chemistry, Novartis Institutes of BioMedical Research, 4056, Basel, Switzerland
| | - Fabio Lima
- Global Discovery Chemistry, Novartis Institutes of BioMedical Research, 4056, Basel, Switzerland
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007, Tarragona, Spain
| |
Collapse
|
17
|
Mandal D, Qu ZW, Grimme S, Stephan DW. Electron-deficient cyclopropenium cations as Lewis acids in FLP chemistry. Chem Commun (Camb) 2023; 59:10508-10511. [PMID: 37564033 DOI: 10.1039/d3cc02684a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Cyclopropenium cations incorporating electron deficient substituents are Lewis acidic despite the presence of π-electrons. The chloride and electron affinities are examined computationally and experimentally, respectively. These cations form classic Lewis acid-base adducts with PPh3, while sterically demanding phosphines yield frustrated Lewis pairs (FLPs) which participate in FLP additions. Depending on the basicity of the phosphine used, addition to alkynes or alkyne deprotonation is observed. In either case, new C-C bonds are formed, thus extending the utility of the concept of FLP chemistry to these delocalized π-cations.
Collapse
Affiliation(s)
- Dipendu Mandal
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, Bonn 53115, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, Bonn 53115, Germany.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
| |
Collapse
|
18
|
Mancinelli JP, Kong WY, Guo W, Tantillo DJ, Wilkerson-Hill SM. Borane-Catalyzed C-F Bond Functionalization of gem-Difluorocyclopropenes Enables the Synthesis of Orphaned Cyclopropanes. J Am Chem Soc 2023; 145:17389-17397. [PMID: 37494703 DOI: 10.1021/jacs.3c05278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, we disclose an approach to synthesize tert-alkyl cyclopropanes by leveraging C-F bond functionalization of gem-difluorocyclopropenes using tris(pentafluorophenyl)borane catalysis. The reaction proceeds through the intermediacy of a fluorocyclopropenium ion, which was confirmed by the isolation of [Ph2(C6D5)C3]+[(C6F5)3BF]-. We found that silylketene acetal nucleophiles were optimal reaction partners with fluorocyclopropenium ion intermediates yielding fully substituted cyclopropenes functionalized with two α-tert-alkyl centers (63-93% yield). The regioselectivity of the addition to cyclopropenium ions is controlled by their steric and electronic properties and enables access to 3,3-bis(difluoromethyl)cyclopropenes in short order. The resulting cyclopropene products are readily reduced to the corresponding orphaned cyclopropanes under hydrogenation conditions. Quantum chemical calculations reveal the nature of the C-F bond cleavage steps and provide evidence for catalysis by boron and not silylated oxonium ions, though Si-F bond formation is the enthalpic driving force for the reaction.
Collapse
Affiliation(s)
- Joseph P Mancinelli
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Sidney M Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
19
|
Palomo E, Sharma AK, Wang Z, Jiang L, Maseras F, Suero MG. Generating Fischer-Type Rh-Carbenes with Rh-Carbynoids. J Am Chem Soc 2023; 145:4975-4981. [PMID: 36812070 PMCID: PMC9999426 DOI: 10.1021/jacs.3c00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We describe the first catalytic generation of Fischer-type acyloxy Rh(II)-carbenes from carboxylic acids and Rh(II)-carbynoids. This novel class of transient donor/acceptor Rh(II)-carbenes evolved through a cyclopropanation process providing access to densely functionalized cyclopropyl-fused lactones with excellent diastereoselectivity. DFT calculations allowed the analysis of the properties of Rh(II)-carbynoids and acyloxy Rh(II)-carbenes as well as the characterization of the mechanism.
Collapse
Affiliation(s)
- Eric Palomo
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel.lí Domingo, 1, Tarragona 43007, Spain
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Zhaofeng Wang
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|