1
|
Kaiyasuan C, Sathiyan G, Harding DJ, Crespy D, Pattanasattayavong P. Insights into the Synthesis of a Semiconducting Nickel Bis(dithiolene) Coordination Polymer. J Phys Chem Lett 2024; 15:12218-12227. [PMID: 39630020 DOI: 10.1021/acs.jpclett.4c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Nickel bis(dithiolene) complexes are promising candidates for novel n-type semiconductors, which are air-stable and highly conductive. A key issue for further development is that their synthesis often yields undesired products, greatly limiting the degree of polymerization as well as purity and adversely affecting their electronic properties. Crucially, there is a lack of in-depth identification of these species and understanding of the reaction mechanism. This study explores the mechanism of a reaction forming the coordination polymer nickel-thieno[3,2-b]thiophenetetrathiolate (Ni-TT). We find that the Unoxidized Ni-TT intermediate contains negatively charged polymer chains with Ni2+ counter cations. Oxidation in the final synthetic step occurs primarily at the ligand, resulting in a more neutral Ni-TT. Our investigation also reveals that the ligand can form dimeric and trimeric species via disulfide bonds as byproducts. These insights are pivotal knowledge to develop metal bis(dithiolene)-based coordination polymers to achieve purity and quality required for electronic applications.
Collapse
Affiliation(s)
- Chokchai Kaiyasuan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Govindasamy Sathiyan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - David J Harding
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Pichaya Pattanasattayavong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
2
|
Wang C, Guo K, Deng Y, Geng Y. Design Strategy for the Synthesis of Self-Doped n-Type Molecules. Chempluschem 2024; 89:e202400286. [PMID: 38858773 DOI: 10.1002/cplu.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
n-Type organic conductive molecules play a significant role in organic electronics. Self-doping can increase the carrier concentration within the materials to improve the conductivity without the need for additional intentional dopants. This review focuses on the various strategies employed in the synthesis of self-doped n-type molecules, and provides an overview of the doping mechanisms. By elucidating these mechanisms, the review aims to establish the relationship between molecular structure and electronic properties. Furthermore, the review outlines the current applications of self-doped n-type molecules in the field of organic electronics, highlighting their performance and potential in various devices. It also offers insights into the future development of self-doped materials.
Collapse
Affiliation(s)
- Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
| | - Kai Guo
- Schools of Materials Science and Engineering, Shandong University of Technology, 255000, Zibo, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
- Joint School of National University of Singapore, Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
- Joint School of National University of Singapore, Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
| |
Collapse
|
3
|
Peng J, Tian T, Xu S, Hu R, Tang BZ. Base-Assisted Polymerizations of Elemental Sulfur and Alkynones for Temperature-Controlled Synthesis of Polythiophenes or Poly(1,4-dithiin)s. J Am Chem Soc 2023; 145:28204-28215. [PMID: 38099712 DOI: 10.1021/jacs.3c10954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
With the increasing demand for functional polythiophenes in extensive applications such as organic solar cells, electronic skins, thermoelectric materials, and field effect transistors, efficient and economic synthetic approaches for polythiophenes are urgently required. In this work, KOH-assisted polymerizations of elemental sulfur and alkynones were developed to directly afford polythiophenes with various backbones, regioselective structures, and high molecular weights (Mns up to 20700 g/mol) in high yields (up to 97%) at 80 °C in 30 min. When the same polymerization was conducted at room temperature, stable and unique poly(1,4-dithiin)s (Mns up to 21800 g/mol) could be rapidly obtained in high yields (up to 87%) in 10 min. The temperature-controlled KOH-assisted polymerizations of sulfur and alkynones possessed high efficiency, mild conditions, and simple operation, which had provided an economic, efficient, and convenient approach for the direct conversion from elemental sulfur to functional polythiophenes and poly(1,4-dithiin)s with the in situ constructed aromatic or nonaromatic heterocycles embedded in the polymer backbones, demonstrating great synthetic simplicity, high efficiency, good selectivity, and robustness. It is anticipated to accelerate the development of semiconducting polymer materials and their applications.
Collapse
Affiliation(s)
- Jianwen Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Tian Tian
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Shuangshuang Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
4
|
Wang C, Yang Y, Lin L, Xu B, Hou J, Deng Y, Geng Y. Self-Doped n-Type Quinoidal Compounds with Good Air Stability and High Electrical Conductivity for Organic Electronics. Angew Chem Int Ed Engl 2023; 62:e202307856. [PMID: 37402633 DOI: 10.1002/anie.202307856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Air stable n-type conductive molecules with high electrical conductivities and excellent device performance have important applications in organic electronics, but their synthesis remains challenging. Herein, we report three self-doped n-type conductive molecules, designated QnNs, with a closed-shell quinoidal backbone and alkyl amino chains of different lengths. The QnNs are self-doped by intermolecular electron transfer from the amino groups to the quinoidal backbone. This process is ascertained unambiguously by experiments and theoretical calculations. The use of a quinoidal structure effectively improves the self-doping level, and thus increases the electrical conductivity of self-doped n-type conductive molecules achieved by a closed-shell structure from<10-4 S cm-1 to>0.03 S cm-1 . Furthermore, the closed-shell quinoidal structure results in good air stability of the QnNs, with half-lives>73 days; and Q4N shows an electrical conductivity of 0.019 S cm-1 even after exposure to air for 120 days. When applying Q6N as the cathode interlayer in organic solar cells (OSCs), an outstanding power conversion efficiency of up to 18.2 % was obtained, which represents one the best results in binary OSCs.
Collapse
Affiliation(s)
- Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Yi Yang
- State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Linlin Lin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|