1
|
Huang Z, Dong J, Liu K, Pan X. Oxygen, light, and mechanical force mediated radical polymerization toward precision polymer synthesis. Chem Commun (Camb) 2025; 61:2699-2722. [PMID: 39817502 DOI: 10.1039/d4cc05772d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization. Therefore, we have developed some oxygen-tolerant systems that directly utilize oxygen for initiating and regulating polymerization. We utilize oxygen/alkylborane as an effective radical initiator system in the polymerization, and also as a reductant for the removal of polymer chain ends. Moreover, we employ the gentler photoinduced CRP to circumvent side reactions caused by high temperatures and achieve temporal and spatial control over the polymerization. To enhance the penetration of the light source for polymerization, we have developed near-infrared light-induced atom transfer radical polymerization. Additionally, we have extended photochemistry to reversible addition-fragmentation chain transfer polymerization involving ion-pair inner-sphere electron transfer mechanism, metal-free radical hydrosilylation polymerization, as well as carbene-mediated polymer modification through C-H activation and insertion mechanisms. Furthermore, we propose a new method for polymerization initiation synergistically triggered by oxygen and mechanical energy. This review not only showcases the current advancements in CRP but also outlines future directions, such as the potential for 3D printing and surface coatings, and the exploration of new heteroatom radical polymerizations. By expanding the boundaries of polymer synthesis, these innovations could lead to the creation of new materials with enhanced functionality and applications.
Collapse
Affiliation(s)
- Zhujun Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Jin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Kaiwen Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
2
|
Du Y, Chen Z, Xie Z, Yi S, Matyjaszewski K, Pan X. Oxygen-Driven Atom Transfer Radical Polymerization. J Am Chem Soc 2025; 147:3662-3669. [PMID: 39817566 DOI: 10.1021/jacs.4c15952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization. This approach exhibits broad compatibility in organic or aqueous media, yielding well-defined polymers with low dispersity (Đ as low as 1.11) and molecular weights closely aligned with theoretical values. Triethylborane (Et3B) and its air-stable triethylborane-amine complex (Et3B-DMAP) facilitate controlled polymerization under open-to-air conditions, demonstrating efficiency across a wide range of monomers. Moreover, the technique enables the successful synthesis of protein-polymer conjugates and supports surface modifications of nanoparticles and silicon wafers under aerobic conditions. This oxygen-driven ATRP represents a robust and versatile platform for precision polymerization with far-reaching implications in materials science, biomedicine, and advanced surface engineering.
Collapse
Affiliation(s)
- Yuxuan Du
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhe Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhikang Xie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Siyu Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Zhang W, Li S, Liu S, Wang TT, Luo ZH, Bian C, Zhou YN. Photomediated Cationic Ring-Opening Polymerization of Cyclosiloxanes with Temporal Control. JACS AU 2024; 4:4317-4327. [PMID: 39610724 PMCID: PMC11600145 DOI: 10.1021/jacsau.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/30/2024]
Abstract
Precision synthesis of polyorganosiloxanes and temporal control over the polymerization process during ring-opening polymerization (ROP) of cyclosiloxanes remain challenging due to the occurrence of side reactions, e.g., intramolecular transfer (backbiting) and intermolecular chain transfer, and irreversible catalyst transformation. In this study, a merocyanine-based photoacid catalyst is developed for cationic ROP of different cyclosiloxanes. A series of well-defined cyclotrisiloxane polymers with predetermined molar masses and low dispersities (Đ < 1.30) are successfully synthesized under various conditions (i.e., different catalyst loadings, initiator concentrations, solvents, and monomer types). Mechanistic insights by experiments and theoretical calculations suggest that the cationic active species, siloxonium ions, are combined with the catalyst anions to form tight ion pairs, thereby attenuating the reactivity of active species and subsequently minimizing side reactions. An efficient photocatalytic cycle is established among the catalyst, monomer, and polymer chain due to the rapid and reversible isomeric phototransformation of the catalyst, which endows the polymerization process with excellent temporal control. Successful in situ chain extension further confirms the controlled characteristics of photomediated CROP. This as-developed polymerization strategy effectively addresses long-standing challenges in the field of polyorganosiloxane synthesis.
Collapse
Affiliation(s)
- Wenxu Zhang
- School
of Chemical Engineering, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Shen Li
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
- School
of Chemical Engineering and Technology, Hainan University, Haikou570228, P. R. China
| | - Shuting Liu
- School
of Chemical Engineering, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Tian-Tian Wang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| | - Chao Bian
- School
of Chemical Engineering, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Yin-Ning Zhou
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Shin S, Kwon Y, Hwang C, Jeon W, Yu Y, Paik HJ, Lee W, Kwon MS, Ahn D. Visible-Light-Driven Rapid 3D Printing of Photoresponsive Resins for Optically Clear Multifunctional 3D Objects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311917. [PMID: 38288894 DOI: 10.1002/adma.202311917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Light-driven 3D printing is gaining significant attention for its unparalleled build speed and high-resolution in additive manufacturing. However, extending vat photopolymerization to multifunctional, photoresponsive materials poses challenges, such as light attenuation and interference between the photocatalysts (PCs) and photoactive moieties. This study introduces novel visible-light-driven acrylic resins that enable rapid, high-resolution photoactive 3D printing. The synergistic combination of a cyanine-based PC, borate, and iodonium coinitiators (HNu 254) achieves an excellent printing rate and feature resolution under low-intensity, red light exposure. The incorporation of novel hexaarylbiimidazole (HABI) crosslinkers allows for spatially-resolved photoactivation upon exposure to violet/blue light. Furthermore, a photobleaching mechanism inhibited by HNu 254 during the photopolymerization process results in the production of optically-clear 3D printed objects. Real-time Fourier transform infrared spectroscopy validates the rapid photopolymerization of the HABI-containing acrylic resin, whereas mechanistic evaluations reveal the underlying dynamics that are responsible for the rapid photopolymerization rate, wavelength-orthogonal photoactivation, and observed photobleaching phenomenon. Ultimately, this visible-light-based printing method demonstrates: (i) rapid printing rate of 22.5 mm h-1, (ii) excellent feature resolution (≈20 µm), and (iii) production of optically clear object with self-healing capability and spatially controlled cleavage. This study serves as a roadmap for developing next-generation "smart" 3D printing technologies.
Collapse
Affiliation(s)
- Sangbin Shin
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Chiwon Hwang
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Woojin Jeon
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Youngchang Yu
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Wonjoo Lee
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Dowon Ahn
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| |
Collapse
|
5
|
Teng X, Qi Y, Guo R, Zhang S, Wei J, Ajarem JS, Maodaa S, Allam AA, Wang Z, Qu R. Enhanced electrochemical degradation of perfluorooctanoic acid by ligand-bridged Pt II at Pt anodes. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133008. [PMID: 37984143 DOI: 10.1016/j.jhazmat.2023.133008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
A new mechanism for the electro-oxidation (EO) degradation of perfluorooctanoic acid (PFOA) by Pt anode was reported. Using bridge-based ligand anions (SCN-, Cl- and N3-) as electrolytes, the degradation effect of PFOA by Pt-EO system was significant. Characterization of the Pt anode, the detection and addition of dissolved platinum ions, and the comparison of Pt with DSA anodes determined that the Pt- ligand complexes resulting from the specific binding of anodically dissolved PtII with ligand ions and C7F15COO- ((C7F15-COO)PtII-L3, L = SCN-, Cl- and N3-) on the electrode surface played a decisive role in the degradation of PFOA. Density functional theory (DFT) calculations showed that inside (C7F15-COO)PtII-L3 complexes, the electron density of the perfluorocarbon chain (including the F atom) compensated toward the carboxyl group and electrons in the PFOA ion transferred to the PtII-Cl3. Moreover, the (C7F15-COO)PtII-Cl3, as a whole, was calculated to migrate electrons toward the Pt anode, leading to the formation of PFOA radical (C7F15-COO•). Finally, with the detection of a series of short chain homologues, the CF2-unzipping degradation pathway of PFOA was proposed. The newly developed Pt-EO system is not affected by water quality conditions and can directly degrade alcohol eluent of PFOA, which has great potential for treating industrial wastewater contaminated with PFOA.
Collapse
Affiliation(s)
- Xiaolei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saleh Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
6
|
Deng Y, Li C, Fan J, Guo X. Photo Fenton RAFT Polymerization of (Meth)Acrylates in DMSO Sensitized by Methylene Blue. Macromol Rapid Commun 2023; 44:e2300258. [PMID: 37496370 DOI: 10.1002/marc.202300258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Indexed: 07/28/2023]
Abstract
A novel open-to-air photo RAFT polymerization of a series of acrylate and methacrylate monomers mediated by matching chain transfer agent irradiated by far-red light in DMSO is reported. Hydroxyl radical (•OH) generated from methylene blue (MB) sensitized decomposition of H2 O2 via photo-Fenton like-reaction is used for polymerization initiation. The "living/control" characteristic is evidenced by kinetic study, in which a pseudo first order curve and linearly increases of molecular weight with the increase of monomer conversion are observed. The living end-group fidelity is characterized by MALDI-TOF-MS and 1 H NMR results, and confirmed by successful chain extension. The temporary controllability is proved by light on/off switch experiment.
Collapse
Affiliation(s)
- Yuanming Deng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Cuiting Li
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiangtao Fan
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xie Guo
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|