1
|
Jing S, Wu L, Wu X, Nao SC, Jia Q, Wang J, Leung CH, Wang W. Dual-color and specific luminescence detection of Pd 2+ ions using iridium(III) complex-based probes in food samples. Food Chem 2025; 483:144327. [PMID: 40245633 DOI: 10.1016/j.foodchem.2025.144327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
The toxicity of palladium (Pd) is highly associated with its oxidative states, thus it is important to develop specific detection methods for Pd2+ ions in food and environmental systems. However, the reliable and selective detection of Pd2+ ions remains challenging. Here, we report two iridium(III) complexes with dual colors (717 nm and 637 nm) for the specific detection of Pd2+ ions, with the 3,3'-diamino group being used as a specific recognition unit for Pd2+ ions for the first time. The dual-color probes showed a luminescence quenching response to Pd2+ ions in aqueous solution within 1 min, along with an obvious color change under UV irradiation. Moreover, complexes 1-2 allow sensitive and selective detection of Pd2+ ions with a limit of detection (LOD) of 0.69 μM and 0.26 μM, respectively, showing a good linear response for Pd2+ ions in the range of 1-13 μM (R2 = 0.985) and 1-9 μM (R2 = 0.996). Finally, the probes were successfully applied for the detection of Pd2+ ions in food and environmental samples with good recoveries ranging from 85.4 to 118.7 %, providing a robust analytical tool for Pd2+ ions quantification for onsite setting.
Collapse
Affiliation(s)
- Shaozhen Jing
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Lei Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Xiaolei Wu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Qingan Jia
- Department of Clinical Nutrition, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Jing Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| | - Wanhe Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Department of Clinical Nutrition, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
2
|
Sun Z, Chen C, Wei M, Wang H, Chen J, Ma W. Understanding the Position Effects of Monoatom Doping in Silver Nanoclusters on Oxygen Reduction by Single Entity Electrochemistry. Angew Chem Int Ed Engl 2025:e202506627. [PMID: 40305588 DOI: 10.1002/anie.202506627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Alloying nanoclusters (NCs) with monoatom doping represents an effective strategy to enhance catalytic performances due to the synergistic interactions between the dopant and host atoms. However, in-depth understanding the position effects of monoatom doping within alloying NCs, particularly at the atomic level, remains elusive. Here, we employed single entity collision electrochemistry method to investigate the electrocatalytic behaviors of individual monoatom-doped bimetallic M1Ag24 (M = Ag, Au, Pt, and Cu) NCs toward oxygen reduction reaction (ORR). By relying on high-resolution and high-throughput electrochemical measurements, we successfully discriminated the effects of monoatom variation in M1Ag24 NCs on ORR activity at the single atom resolution and identified different M1Ag24 NCs across characteristic populations. Our experimental findings and theoretical calculations reveal the electrocatalytic reaction dynamics associated with intracluster migration of Au monoatom during the dynamic alloying process of Au1Ag24 NCs. This work demonstrates a novel approach for in situ identifying the position effects of foreign doping atoms on the electrocatalytic activity of alloy NCs at the single atom level.
Collapse
Affiliation(s)
- Zehui Sun
- School of Chemistry and Molecular Engineering, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Cheng Chen
- School of Chemistry and Molecular Engineering, State Key Laboratory for Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Mengdan Wei
- School of Chemistry and Molecular Engineering, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Haifeng Wang
- School of Chemistry and Molecular Engineering, State Key Laboratory for Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jianfu Chen
- School of Chemistry and Molecular Engineering, State Key Laboratory for Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Wei Ma
- School of Chemistry and Molecular Engineering, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
3
|
Milos E, Cocheci L, Popa A, Lupa L, Filimon A. Hybrid Materials-Mg 3Al-LDH/Ionic Liquids/Chitosan Used in the Recovery Process of Pd Ions from Aqueous Solutions. Molecules 2024; 29:6001. [PMID: 39770090 PMCID: PMC11679485 DOI: 10.3390/molecules29246001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The recovery of palladium from aqueous solutions is important due to its critical role in various industrial applications and the growing demand for sustainable resource management. This study investigates the potential of hybrid materials composed of Mg3Al layered double hydroxides (LDHs), chitosan, and ionic liquids (methyl trialchil ammonium chloride) for the efficient adsorption of palladium ions from low-concentration aqueous solutions. Comprehensive characterization techniques, including X-ray diffraction (RX), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TG), were employed to elucidate the structural and compositional properties of the hybrid materials. The results of the batch adsorption experiments demonstrate that each component contributes synergistically to the adsorption process, significantly enhancing the overall efficacy of palladium recovery. Furthermore, the method of preparing the adsorbent material was found to impact the effectiveness of palladium recovery. Among the materials tested, the chitosan/Mg3Al/IL hybrid exhibited the highest adsorption capacity (qmax = 98 mg/g), suggesting that the ionic liquid functionalization is most beneficial when applied during the hybrid material synthesis, rather than during the LDH synthesis process. This research underscores the viability of hybrid materials as a sustainable approach to palladium recovery, contributing to advancements in environmental remediation technologies.
Collapse
Affiliation(s)
- Emilia Milos
- Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, Victoriei Square, No. 2, 300006 Timisoara, Romania; (E.M.); (L.C.)
| | - Laura Cocheci
- Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, Victoriei Square, No. 2, 300006 Timisoara, Romania; (E.M.); (L.C.)
| | - Adriana Popa
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timisoara, Romania;
| | - Lavinia Lupa
- Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, Victoriei Square, No. 2, 300006 Timisoara, Romania; (E.M.); (L.C.)
| | - Anca Filimon
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania;
| |
Collapse
|
4
|
Chen Z, Yang Y, Cui X, Chai L, Liu H, Pan Y, Zhang Y, Xie Y, Le T. Process, advances, and perspectives of graphene oxide-SELEX for the development of aptamer molecular probes: A comprehensive review. Anal Chim Acta 2024; 1320:343004. [PMID: 39142771 DOI: 10.1016/j.aca.2024.343004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Aptamers are screened via the systematic evolution of ligands by exponential enrichment (SELEX) and are widely used in molecular diagnostics and targeted therapies. The development of efficient and convenient SELEX technology has facilitated rapid access to high-performance aptamers, thereby advancing the aptamer industry. Graphene oxide (GO) serves as an immobilization matrix for libraries in GO-SELEX, making it suitable for screening aptamers against diverse targets. RESULTS This review summarizes the detailed steps involved in GO-SELEX, including monitoring methods, various sublibrary acquisition methods, and practical applications from its inception to the present day. In addition, the potential of GO-SELEX in the development of broad-spectrum aptamers is explored, and its current limitations for future development are emphasized. This review effectively promotes the application of the GO-SELEX technique by providing valuable insights and assisting researchers interested in conducting related studies. SIGNIFICANCE AND NOVELTY To date, no review on the topic of GO-SELEX has been published, making it challenging for researchers to initiate studies in this area. We believe that this review will broaden the SELEX options available to researchers, ensuring that they can meet the growing demand for molecular probes in the scientific domain.
Collapse
Affiliation(s)
- Zhuoer Chen
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Ying Yang
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Xinge Cui
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Luwei Chai
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Hongbing Liu
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yangwei Pan
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yongkang Zhang
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yujia Xie
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Tao Le
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China.
| |
Collapse
|
5
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Zhang JH, Song DM, Zhou YG. Impact electrochemistry for biosensing: advances and future directions. Analyst 2024; 149:2498-2506. [PMID: 38629127 DOI: 10.1039/d4an00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Impact electrochemistry allows for the investigation of the properties of single entities, ranging from nanoparticles (NPs) to soft bio-particles. It has introduced a novel dimension in the field of biological analysis, enhancing researchers' ability to comprehend biological heterogeneity and offering a new avenue for developing novel diagnostic devices for quantifying biological analytes. This review aims to summarize the recent advancements in impact electrochemistry-based biosensing over the past two to three years and provide insights into the future directions of this field.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Dian-Mei Song
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, Guangdong Province, China
| |
Collapse
|
7
|
Wang Y, Wei M, Ding Q, Li H, Ma W. Identification of Intersite Distance Effects in Au-Ag Single-Atom Alloy Catalysts Using Single Nanoparticle Collision Electrochemistry. NANO LETTERS 2024. [PMID: 38620010 DOI: 10.1021/acs.nanolett.3c04006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Regulating the atomic density of single-atom alloys (SAAs) promotes the potential to significantly enhance the electrocatalytic activity. However, conventional methods for study on the electrocatalytic performance of SAAs versus the intersite distance demand exhaustive experiments and characterization. Herein, we present a combinatorial synthesis and analysis method to investigate the intersite distance effect of SAA electrocatalysts. We employ single-nanoparticle collision electrochemistry to realize in situ electrodeposition of a precisely tunable Au atomic density onto individual parent Ag nanoparticles, followed by instantaneous electrocatalytic measurement of the newborn Au-Ag SAAs. In this work, the utility of our method is confirmed by the identification of intersite distance effects of Au-Ag SAAs toward the oxygen reduction reaction. When the site distance between two neighboring Au atoms is 1.9 nm, Au-Ag SAAs exhibit optimal activity. This work provides a simple and efficient method for screening other SAA electrocatalysts with ideal intersite distance at the single-nanoparticle level.
Collapse
Affiliation(s)
- Yixiao Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Mengdan Wei
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qingdan Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Huimin Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
8
|
Zimmermann P, Tekinalp Ö, Wilhelmsen Ø, Deng L, Burheim OS. Enhancing Palladium Recovery Rates in Industrial Residual Solutions through Electrodialysis. MEMBRANES 2023; 13:859. [PMID: 37999345 PMCID: PMC10673505 DOI: 10.3390/membranes13110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Palladium is a vital commodity in the industry. To guarantee a stable supply in the future, it is imperative to adopt more effective recycling practices. In this proof-of-concept study, we explore the potential of electrodialysis to enhance the palladium concentration in a residual solution of palladium recycling, thus promoting higher recovery rates. Experiments were conducted using an industrial hydrochloric acid solution containing around 1000 mg/L of palladium, with a pH below 1. Two sets of membranes, Selemion AMVN/CMVN and Fujifilm Type 12 AEM/CEM, were tested at two current levels. The Fujifilm membranes, which are designed for low permeability of water, show promising results, recovering around 40% of palladium within a two-hour timeframe. The Selemion membranes were inefficient due to excessive water transport. All membranes accumulated palladium in their structures. Anion-exchange membranes showed higher palladium accumulation at lower currents, while cation-exchange membranes exhibited increased palladium accumulation at higher currents. Owing to the low concentration of palladium and the presence of abundant competing ions, the current efficiency remained below 2%. Our findings indicate a strong potential for augmenting the palladium stage in industrial draw solutions through electrodialysis, emphasizing the importance of membrane properties and process parameters to ensure a viable process. Beyond the prominent criteria of high permselectivity and low resistance, minimizing the permeability of water within IEMs remains a key challenge to mitigating the efficiency loss associated with uncontrolled mixing of the electrolyte solution.
Collapse
Affiliation(s)
- Pauline Zimmermann
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway;
| | - Önder Tekinalp
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (Ö.T.); (L.D.)
| | - Øivind Wilhelmsen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway;
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (Ö.T.); (L.D.)
| | - Odne Stokke Burheim
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway;
| |
Collapse
|
9
|
Sustainable Utilization of Palladium from Industrial Catalytic Waste by A Smart Magnetic Nano Stirring Robot. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|