1
|
Wang J, He M, Cao T, Zhu S. Pyrone Isomerization Enabled Divergent Access to Multisubstituted Biaryl Phenol via Relay Claisen Rearrangement. Org Lett 2025; 27:4865-4869. [PMID: 40310990 DOI: 10.1021/acs.orglett.5c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Arene isomerization can simultaneously edit the arene backbone and its periphery, thereby bridging the independent chemistry of two distinct arenes. Herein, a facile pyrone isomerization approach for the divergent synthesis of five- and sixfold-substituted biaryl phenols is achieved by using a relay Claisen rearrangement as a crucial step. This catalyst-free isomerization reaction features high step, atom, and redox economy by transferring the innate oxidation state of pyrone into the biaryl phenols. Additionally, an intriguing self-activation phenomenon was observed, which enabled the selective dienone-phenol rearrangement of the aryl group.
Collapse
Affiliation(s)
- Jialin Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingluo He
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tongxiang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Kim SF, Amber C, Bartholomew GL, Sarpong R. Skeletal Editing Strategies Driven by Total Synthesis. Acc Chem Res 2025. [PMID: 40373286 DOI: 10.1021/acs.accounts.5c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
ConspectusSingle-atom skeletal editing strategies that precisely modify the core frameworks of molecules have the potential to streamline and accelerate organic synthesis by enabling conceptually simple, but otherwise synthetically challenging, retrosynthetic disconnections. In contrast to broader skeletal remodeling and rearrangement strategies, these methodologies more specifically target single-atom changes with high selectivity, even within complex molecules such as natural products or pharmaceuticals. For the past several years, our laboratory has developed several skeletal editing methodologies, including single-atom ring contractions, expansions, and transpositions of both saturated and unsaturated heterocycles, as well as other carbon scaffolds. This Account details the evolution of "skeletal editing logic" within the context of our extensive work on natural product total synthesis.Early work in the Sarpong group leveraged metal-mediated C-C bond cleavage of in situ-generated strained intermediates to accomplish total syntheses of natural products, such as the icetexane diterpenoids and cyathane diterpenes. Continuing our focus on leveraging C-C bond cleavage through "break-it-to-make-it" strategies, we then developed carvone remodeling strategies to access a variety of terpenoids (including longiborneol sesquiterpenoids, phomactins, and xishacorenes) from hydroxylated pinene derivatives. In applying this skeletal remodeling and C-C cleavage framework to alkaloid natural products, such as the preparaherquimides and lycodine-type alkaloids, we recognized that single-atom changes to the saturated nitrogen-containing rings within these natural products would enable the direct conversion between distinct but structurally related natural product families. Thus, we began developing methods that selectively modify the core frameworks of N-heterocycles; this focus led to our work on the deconstructive fluorination and diversification of piperidines and ultimately to our recent body of work on direct, single-atom core framework modifications (single-atom skeletal editing). In the context of saturated heterocycles, we developed photomediated enantioselective ring contractions of α-acylated motifs and reductive ring contractions of cyclic hydroxylamines. For unsaturated heterocycles, we have developed ring contractions of azines (e.g., pyrimidine to pyrazole), 15N isotopic labeling of azines, and phototranspositions of indazoles to benzimidazoles. To direct our focus on reaction development, a cheminformatic analysis of heteroaromatic skeletal edits served to quantitatively inform which transformations would most significantly expand the accessible chemical space. Apart from heterocycles, we also reported single-nitrogen insertion through the reductive amination of carbonyl C-C bonds. Ultimately, the goal of this research is to develop mild and selective skeletal editing methodologies that can be applied to total synthesis and organic synthesis more generally. While recent total syntheses from our group have targeted simplified retrosyntheses through single-atom skeletal editing logic (e.g., daphenylline and harringtonolide), multiple steps were still required to achieve the formal desired "edit". As such, the continued development of truly single-step, mild, and selective reactions that can edit the cores of highly complex molecules remains highly desirable.
Collapse
Affiliation(s)
- Sojung F Kim
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Charis Amber
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - G Logan Bartholomew
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Frezza F, Sánchez‐Grande A, Canola S, Nacci C, Klívar J, Mutombo P, Chen Q, Gómez‐Fernandez JM, Sánchez‐Sánchez C, Berger J, Ernst K, Stará IG, Martín‐Gago JÁ, Starý I, Grill L, Jelínek P. Photogeneration and Visualization of a Surface-Stabilized Dinitrene. Angew Chem Int Ed Engl 2025; 64:e202502640. [PMID: 39989376 PMCID: PMC12070354 DOI: 10.1002/anie.202502640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
Nitrenes are known as key intermediates in various chemical reactions. Nitrene transfer reactions are particularly effective for synthesizing nitrogen-containing compounds, where metal catalysts play a crucial role in controlling nitrene reactivity and selectivity. In this study, we demonstrate the formation of a stable surface-supported dinitrene on Au(111) through UV irradiation of its diazide precursor, characterized by scanning probe techniques. The photoreaction mechanism is elucidated with wavelength-dependent experiments and time-dependent density functional theory calculations. Our findings present the first real-space visualization of a metal nitrene adsorbed on a surface, highlighting its potential in catalysis and surface functionalization.
Collapse
Affiliation(s)
- Federico Frezza
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
- Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PragueBřehová 78/711519Prague 1Czech Republic
| | - Ana Sánchez‐Grande
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | - Sofia Canola
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | - Christophe Nacci
- Department of Physical ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Jiří Klívar
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 216610Prague 6Czech Republic
| | - Pingo Mutombo
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | - Qifan Chen
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | | | | | - Jan Berger
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN)Palacký University78371OlomoucCzech Republic.
| | - Karl‐Heinz Ernst
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
- EmpaSwiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 1298600DübendorfSwitzerland
| | - Irena G. Stará
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 216610Prague 6Czech Republic
| | | | - Ivo Starý
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 216610Prague 6Czech Republic
| | - Leonhard Grill
- Department of Physical ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Pavel Jelínek
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN)Palacký University78371OlomoucCzech Republic.
| |
Collapse
|
4
|
Al-Ahmad R, Dai M. Advancing Total Synthesis Through Skeletal Editing. Acc Chem Res 2025; 58:1392-1406. [PMID: 40209068 PMCID: PMC12060283 DOI: 10.1021/acs.accounts.5c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/12/2025]
Abstract
ConspectusTotal synthesis has long been a proving ground for advancing chemical thought, pushing chemists to develop strategies that not only replicate nature's complexity but often surpass it. The pursuit of efficiency, practicality, and elegance continues to challenge and reshape the guiding principles of total synthesis. In recent years, skeletal editing has emerged as a powerful strategy for reconfiguring skeletal frameworks in ways that were previously difficult to imagine. Unlike conventional chemical synthesis approaches, which primarily rely on the logic of bond construction reactions and functional group manipulations, skeletal editing introduces elements that allow for atom insertion, deletion, and exchange and skeletal rearrangement/reorganization by harnessing the potential energy and reactivity of certain structural motifs and morphing them into new electronic and spatial configurations. The logic of modern skeletal editing has been fueling the development of new editing methods and advancing the fields of total synthesis, medicinal chemistry, materials science, and others.In this Account, we detail our program using skeletal editing-based retrosynthetic logic to facilitate natural product synthesis. We first highlight two one-carbon insertion editing strategies utilizing the Ciamician-Dennstedt rearrangement and the Büchner-Curtius-Schlotterbeck ring expansion to streamline the total syntheses of complanadine and phleghenrine Lycopodium alkaloids. We next present our synthesis of crinipellin and gibberellin diterpenes by leveraging the facile synthesis and intrinsic strain of cyclobutanes as precursors to challenging cyclopentanes via cut-and-insert editing (crinipellins) or C-C bond migratory ring expansion (GA18). Toward the end, we describe our early efforts in orchestrating structural rearrangement and functional group pairing reactions to access seven monoterpene indole alkaloids and highlight the divergent potential of skeletal editing. Each of the five examples follows a build-edit-decorate workflow, inspired by Schreiber's build-couple-pair in diversity-oriented synthesis. In the build stage, key scaffolds are efficiently assembled from starting materials with matched reactivity. The edit stage morphs these scaffolds to the desired but more challenging ones encoded by the target molecules, reminiscent of Corey's application of rearrangement transforms as a topological strategy. The decorate stage introduces additional functional groups and adjusts oxidation states to complete the total synthesis, similar to the oxidase phase of Baran's two-phase synthesis. The essence of skeletal editing-based retrosynthetic analysis is to identify latent structural relationships between the readily assembled key scaffolds constructed in the build stage and the desired ones encoded by the target molecules as well as proper editing methods to transform the former into the latter with precision. The build-edit-decorate approach parallels the dynamism of biosynthesis, enabling rapid building of complexity with great efficiency and step economy, as analyzed by the spacial scores (SPS) of each case. Drawing on these principles, chemists can adopt skeletal editing-based retrosynthetic logic by identifying latent intermediates and employing and developing strategic editing methods to overcome synthetic bottlenecks.
Collapse
Affiliation(s)
- Reem Al-Ahmad
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mingji Dai
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Zeng G, Fu Z, Yin B, Huang L. Visible Light-Induced Single-Atom Insertion of Indenes via Aerobic Ring Scission-Condensation-Rearomatization. Chemistry 2025; 31:e202403828. [PMID: 40098588 DOI: 10.1002/chem.202403828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
In this study, we present a photocatalyzed single-atom insertion of indenes, involving an aerobic ring scission into dicarbonyl intermediates, which subsequently undergo condensation and rearomatization to efficiently synthesize isoquinoline and naphthalene derivatives. The use of an inexpensive organic dye as the photocatalyst under aerobic conditions with cheap ammonium acetate (NH4OAc) as the nitrogen source makes this method very practical and environmentally friendly to access isoquinoline. Alternatively, an intramolecular carbon-atom-insertion process, involving the Aldol reaction of the dicarbonyl intermediates, affords the naphthalenamine and naphthalen-2-ol derivatives. Mechanistic studies support that the superoxide anion radical species mediates the C═C double bond scission of indenes rather than the singlet oxygen intermediate.
Collapse
Affiliation(s)
- Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zeyuan Fu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
6
|
Cui FH, Gao LH, Ruan K, Li F, Meng M, Ma K, Lu Z, Fei J, Tian H, Liu LL, Lin YM, Xia H. Fusion of Four Aromatic Rings via an Atom-Mutual-Embedding Strategy to Form a Tetrahexacyclic System. J Am Chem Soc 2025; 147:13601-13609. [PMID: 40227147 DOI: 10.1021/jacs.5c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Skeletal manipulation of aromatic compounds has emerged as a potent tool in synthetic chemistry, but simultaneous multiring manipulation remains largely unexplored due to the inherent complexities of ring and site selectivity. Herein, we report an unprecedented multiring skeletal manipulation that fuses four 5-membered aromatic rings, comprising two organic and two metal-containing aromatic systems, into a novel metal-bridged 6/6/6/6-membered ring scaffold. The sequential ring fusion is accomplished through an atom-mutual-embedding strategy; this strategy entails the stepwise insertion of two nitrogen atoms into separate metal-carbon bonds and simultaneously integrates a metal atom as a bridge across two isoxazole moieties. The presence of a central metal atom is crucial for ensuring precise substrate alignment and enhancing both the ring and site specificity. The resulting tetrahexacyclic products exhibit remarkable stability and superior near-infrared (NIR) functional properties, surpassing those of the precursor compounds. This work not only establishes a conceptual foundation for designing versatile substrate molecules amenable to intricate editing but also contributes to the rational and performance-targeted manipulation of molecular architectures.
Collapse
Affiliation(s)
- Fei-Hu Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Le-Han Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Kaidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Meng Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Kexin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Zhang Y, Han F, Yin Z, Cai Y, Zhang X, Zhang H. Fluorescent pyridine phosphonium salts via transmutation of metallabenzenes. Nat Commun 2025; 16:3632. [PMID: 40240770 PMCID: PMC12003804 DOI: 10.1038/s41467-025-58855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Metallabenzenes are recognized as a unique class of aromatic compounds, not only of structural and theoretical interest but also as platforms to design powerful transformations. Here, we report the successful transmutation of a metallabenzene for pyridine synthesis. This 'metal-to-nitrogen swapping' process utilizes readily available ruthenabenzene phosphonium salts and commercially available 2-aminopyridines under mild conditions. The isolation of ruthena-azepines, containing a planar seven-membered aza-metallacycle, along with DFT calculations, supports the nitrogen insertion/metal deletion cascade driven by aromatization. Additionally, we investigate the tunable photophysical properties of the resulting pyridine phosphonium salts.
Collapse
Affiliation(s)
- Yaowei Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Feifei Han
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zhihong Yin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yapeng Cai
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiaoyan Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Hong Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
8
|
Liu LJ, Tian MY, Lang ZY, Wang YL, He CY, Chen YZ, Han WY. Indole-Quinoline Transmutation Enabled by a Formal Rhodium Carbynoid. Angew Chem Int Ed Engl 2025:e202501966. [PMID: 40207390 DOI: 10.1002/anie.202501966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/11/2025]
Abstract
Skeleton editing is an emerging and powerful tool in organic chemistry because it can simplify synthetic procedures towards complex molecules. Herein, we present an approach for indole-quinoline transmutation through rhodium-catalyzed single-carbon insertion into the C2(sp2)─C3(sp2) bond of an indole with an α-diazotrifluoroethyl sulfonium salt that we developed. This protocol involves a formal trifluoromethyl rhodium carbynoid (CF3C+ = Rh) resembling a trifluoromethyl cationic carbyne (CF3C+:), allowing facile access to an array of quinolines in moderate to high yields. Potential applications in the late-stage skeletal editing of pharmaceutical and natural product derivatives, preparation of adapalene analogs, scaled-up synthesis, and transformations of products are highlighted. Finally, a computational study was conducted to support the envisioned mechanism.
Collapse
Affiliation(s)
- Lu-Jie Liu
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Meng-Yang Tian
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Zhi-Yu Lang
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Yong-Li Wang
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Chun-Yang He
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Yong-Zheng Chen
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Wen-Yong Han
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| |
Collapse
|
9
|
Zhang Y, Lu H, Chang J, Xu PF, Li H, Jin Y, Wei H. Direct Conversion of Aromatic Lactones into Bioisosteres by Carbonyl-to-Boranol Exchange. Angew Chem Int Ed Engl 2025:e202500921. [PMID: 40193063 DOI: 10.1002/anie.202500921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Bioisosteric replacement is an important strategy in drug discovery and is commonly practiced in medicinal chemistry; however, the incorporation of bioisosteres typically requires laborious multistep de novo synthesis. The direct conversion of a functional group into its corresponding bioisostere is of particular significance in evaluating structure-property relationships. Herein, we report a functional-group-exchange strategy that enables the direct conversion of aromatic lactones, a prevalent motif in bioactive molecules, into their corresponding cyclic hemiboronic acid bioisosteres. Scope evaluation and product derivatization experiments demonstrate the synthetic value and broad functional-group compatibility of this strategy, while the application of this methodology to the rapid remodeling of chromenone cores in bioactive molecules highlights its utility.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Jie Chang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Yuan Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
10
|
Zhang XX, Xu ST, Li XT, Song TT, Ji DW, Chen QA. Dearomative Skeletal Editing of Benzenoids via Diradical. J Am Chem Soc 2025; 147:11533-11542. [PMID: 40129311 DOI: 10.1021/jacs.5c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Dearomative skeletal editing of benzenoids represents a promising yet challenging strategy for the rapid construction of high-value carbon frameworks from readily accessible starting materials. Büchner reaction is a unique type of expansive skeletal editing that transforms benzenoids into functionalized cycloheptatrienes. However, due to challenges in compatibility and selectivity, achieving seamless integration of this reaction with dearomative cycloaddition within a unified system remains undeveloped. Here, we demonstrated an energy-transfer-induced intermolecular dearomative skeletal editing reaction of benzenoids with a range of electronically diverse alkynes. This protocol employed N-acylimines as diradical precursors to efficiently construct various structurally diverse polycyclic frameworks in high chemo-, regio-, and diastereoselectivities that have been previously inaccessible. The challenges related to general reactivity and selectivity issues were circumvented through the smooth merging of photoinduced skeletal editing with dearomative cycloaddition. Experimental and computational studies were performed to support the diradical mechanism and interpret the origins of the observed chemo-, regio-, and diastereoselectivities.
Collapse
Affiliation(s)
- Xiang-Xin Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shan-Tong Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xue-Ting Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
11
|
Tyler JL, Trauner D, Glorius F. Reaction development: a student's checklist. Chem Soc Rev 2025; 54:3272-3292. [PMID: 39912730 DOI: 10.1039/d4cs01046a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
So you've discovered a reaction. But how do you turn this new discovery into a fully-fledged program that maximises the potential of your novel transformation? Herein, we provide a student's checklist to serve as a helpful guide for synthesis development, allowing you to thoroughly investigate the chemistry in question while ensuring that no key aspect of the project is overlooked. A wide variety of the most illuminating synthetic and spectroscopic techniques will be summarised, in conjunction with literature examples and our own insights, to provide sound justifications for their implementation towards the goal of developing new reactions.
Collapse
Affiliation(s)
- Jasper L Tyler
- University of Muenster, Institute for Organic Chemistry, Corrensstrasse 36, 48149 Muenster, Germany.
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | - Frank Glorius
- University of Muenster, Institute for Organic Chemistry, Corrensstrasse 36, 48149 Muenster, Germany.
| |
Collapse
|
12
|
Lin Y, Hou Z, Yu T, Lin M, Fu G, Chen T, Li L, Zhu Z, Chen X. Skeleton Editing of Benzothiazoles to Spiro[benzothiazole- n-alkanes] by Carbon-to-Carbon Single-Atom Swapping. J Org Chem 2025; 90:3877-3887. [PMID: 40047803 DOI: 10.1021/acs.joc.4c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Skeleton editing can be used to precisely replace or rearrange atoms in the core ring structure of complex molecules and is often used to modify heteroaromatic compounds. However, this approach has not been used to modify thiazole rings. We report the direct construction of spiro[benzothiazole-n-alkanes] through skeleton editing of thiazolium salts by carbon-to-carbon single-atom swapping. Skeleton editing via carbon deletion and insertion has the advantages of high efficiency, high selectivity, simple operation, and one-step, metal-catalyst-free construction of novel spirocyclic products with novel structures.
Collapse
Affiliation(s)
- Yuqun Lin
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhuoqun Hou
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tong Yu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Meiyi Lin
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Guozhang Fu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tianxiang Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Lanyu Li
- Guilin Medical University Laboratory Animal Center, Guilin, Guangxi 541001, China
| | - Zhongzhi Zhu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
13
|
Lu H, Chang J, Wei H. Transition Metal-Catalyzed Nitrogen Atom Insertion into Carbocycles. Acc Chem Res 2025; 58:933-946. [PMID: 40008653 DOI: 10.1021/acs.accounts.4c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
ConspectusN-Heterocycles are essential in pharmaceutical engineering, materials science, and synthetic chemistry. Recently, skeletal editing, which involves making specific point changes to the core of a molecule through single-atom insertion, deletion, or transmutation, has gained attention for its potential to modify complex substrates. In this context, the insertion of nitrogen atoms into carbocycles to form N-heterocycles has emerged as a significant research focus in modern synthetic chemistry owing to its novel synthetic logic. This distinctive retrosynthetic approach enables late-stage modification of molecular skeletons and provides a different pathway for synthesizing multiply substituted N-heterocycles. Nevertheless, nitrogen atom insertion into carbocycles has proven challenging because of the inherent inertness of carbon-based skeletons and difficulty in cleaving C-C bonds. Therefore, selective insertion of nitrogen atoms for skeletal editing remains a challenging and growing field in synthetic chemistry. This Account primarily highlights the contributions of our laboratory to this active field and acknowledges the key contributions from other researchers. It is organized into two sections based on the type of the carbocycle. The first section explores the insertion of nitrogen atoms into cycloalkenes. Recent Co-catalyzed oxidative azidation strategies have enabled nitrogen atom insertion into cyclobutenes, cyclopentenes, and cyclohexenes, facilitating the synthesis of polysubstituted pyridines, which has been conventionally challenging through pyridine cross-coupling. The subsequent section highlights our discovery in the realm of nitrogen atom insertion into arenes. The site-selective skeletal editing of stable arenes is challenging in synthetic chemistry. We developed a method for the intramolecular insertion of nitrogen atoms into the benzene rings of 2-amino biaryls by suppressing the competing C-H insertion process by using a paddlewheel dirhodium catalyst. In addition, to address the challenging site-selective issues in nitrogen atom insertion, we employed arenols as substrates, which could act as selective controlling elements in site-selective skeletal editing. We reported a Cu-catalyzed nitrogen atom insertion into arenols, which proceeds through a dearomative azidation/aryl migration process, enabling the site-selective incorporation of nitrogen atoms into arenes. Inspired by this result, we recently extended the reaction model by using a Fe-catalyst to facilitate the ring contraction of the nitrogen-inserted product, achieving the carbon-to-nitrogen transmutation of arenols. Various complex polyaromatic arenols could effectively undergo the desired atom's transmutation, presenting considerable potential for various applications in materials chemistry. In this Account, we present an overview of our achievements in nitrogen atom insertion reactions, with a focus on the reaction scopes, mechanistic features, and synthetic applications. We anticipate that this Account will provide valuable insights and propel the development of innovative methodologies in both skeletal editing and N-heterocycle synthesis.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jie Chang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
14
|
Bro FS, Laraia L. Unifying principles for the design and evaluation of natural product-inspired compound collections. Chem Sci 2025; 16:2961-2979. [PMID: 39906386 PMCID: PMC11788825 DOI: 10.1039/d4sc08017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Natural products play a major role in the discovery of novel bioactive compounds. In this regard, the synthesis of natural product-inspired and -derived analogues is an active field that is further developing. Several strategies and principles for the design of such compounds have been developed to streamline their access and synthesis. This perspective describes how individual strategies or their elements can be combined depending on the project goal. Illustrative examples are shown that demonstrate the blurred lines between approaches and how they can work in concert to discover new biologically active molecules. Lastly, a general set of guidelines for choosing an appropriate strategy combination for the specific purpose is presented.
Collapse
Affiliation(s)
- Frederik Simonsen Bro
- Department of Chemistry, Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
15
|
Bossonnet A, Garner RA, O'Brien J, Trujillo C, Trowbridge AD. Oxenoid Reactivity Enabled by Targeted Photoactivation of Periodate. Angew Chem Int Ed Engl 2025; 64:e202417402. [PMID: 39423248 DOI: 10.1002/anie.202417402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
The chemistry of low-valent intermediates continues to inspire new modes of reactivity across synthetic chemistry. But while the generation and reactivity of both carbenes and nitrenes are well-established, difficulties in accessing oxene, their oxygen-based congener, has severely hampered its application in synthesis. Here, we report a conceptually novel approach towards oxenoid reactivity through the violet-light photolysis of tetrabutylammonium periodate. Computational studies reveal an unexpected geometric change upon periodate photoexcitation that facilitates intersystem crossing and near-barrierless dissociation of triplet periodate into oxene. Under these operationally simple conditions, we have demonstrated the epoxidation of a wide range of substituted olefins, revealing unprecedented functional group compatibility. By overcoming the historic challenges associated with employing oxene as an intermediate in organic chemistry, we believe that this platform will inspire the development of new reactive oxygen-based methodologies across industry and academia.
Collapse
Affiliation(s)
- Andre Bossonnet
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Ruth A Garner
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - James O'Brien
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Cristina Trujillo
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Aaron D Trowbridge
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
16
|
Zhu T, Cui X, Ma W, Qi X, Wei H. Synthesis of naphthalene derivatives via nitrogen-to-carbon transmutation of isoquinolines. SCIENCE ADVANCES 2025; 11:eads5928. [PMID: 39879292 PMCID: PMC11777194 DOI: 10.1126/sciadv.ads5928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Heteroarene skeletal editing is gaining popularity in synthetic chemistry. Transmuting single atoms generates molecules that have distinctly varied properties, thereby fostering potent molecular exchanges that can be extensively used to synthesize functional molecules. Herein, we present a convenient protocol for nitrogen-carbon single-atom transmutations in isoquinolines, which is inspired by the Wittig reaction and enables easy access to substituted naphthalene derivatives. The reaction uses an inexpensive and commercially available phosphonium ylide as the carbon source to furnish a wide range of substituted naphthalenes. The key to the success of this transformation is the formation of a triene intermediate through ring opening, which undergoes 6π-electrocyclization and elimination processes to afford the naphthalene product. Furthermore, this strategy enables the facile synthesis of 13C-labeled naphthalenes using 13CH3PPh3I as a commercial 13C source and facilitates modifying the directing group for C─H functionalization.
Collapse
Affiliation(s)
- Tongtong Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Xuhui Cui
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Wenjun Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Xiujuan Qi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
17
|
Han J, Fan Y, Yang X, Zhu Y, Zhang X, Zhang F, Hao G, Jiang Y. Synthesis of Functionalized Cycloheptadienones Starting from Phenols and Using a Rhodium/Boron Asymmetric Catalytic System. Angew Chem Int Ed Engl 2025; 64:e202416468. [PMID: 39496563 DOI: 10.1002/anie.202416468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
Skeletal editing offers a unique route to assemble complex architectures from simple feedstocks that are otherwise difficult to obtain. However, the asymmetric version of skeletal editing has not been widely studied. Herein, we present a modular rhodium/boron asymmetric catalytic system that enables ring-expansion of phenols with cyclopropenes to synthesize highly functionalized cycloheptadienones in excellent chemo- and regioselectivities. This unique protocol features with low-catalyst loading, atom and step-economies, and mild neutral reaction conditions. Isotope-labelling experiments and DFT calculations have been conducted to reveal that boron reagent plays a vital role in the whole catalytic cycle.
Collapse
Affiliation(s)
- Jiabin Han
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yaxin Fan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
| | - Xiaoyan Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
| | - Yuanhao Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xuheng Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Fukuan Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
| | - Yaojia Jiang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
| |
Collapse
|
18
|
Kim SF, Liles JP, Lux MC, Park H, Jurczyk J, Soda Y, Yeung CS, Sigman MS, Sarpong R. Interrogation of Enantioselectivity in the Photomediated Ring Contractions of Saturated Heterocycles. J Am Chem Soc 2025; 147:1851-1866. [PMID: 39746148 PMCID: PMC12081160 DOI: 10.1021/jacs.4c13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
We recently reported a chiral phosphoric acid (CPA) catalyzed enantioselective photomediated ring contraction of piperidines and other saturated heterocycles. By extruding a single heteroatom from a ring, this transformation builds desirable C(sp3)-C(sp3) bonds in the ring contracted products; however, the origins of enantioselectivity remain poorly understood. In this work, enantioselectivity of the ring contraction has been explored across an expanded structurally diverse substrate scope, revealing a wide range of enantioselectivities (0-99%) using two distinct CPA catalysts. Mechanistic investigations support rate-determining excitation that generates short-lived achiral intermediates that are intercepted by the CPA in an enantiodetermining ring closure. The effects of competitive uncatalyzed reactivity and light-driven reversibility of the enantiodetermining ring closure on enantioselectivity have been elucidated. Statistical models were built by regressing the range of enantioselectivities from the substrate scope against key structural features of the products for both CPA catalysts. The resultant models suggested distinct factors that influence the enantioselectivity response for each catalyst and enabled rational modification of a pharmaceutically relevant target molecule to improve enantioselectivity. Finally, density functional theory (DFT)-based transition state analysis identified distinct noncovalent interactions with each catalyst that correlated with the unique selectivity-relevant features uncovered through statistical modeling. Our findings not only offer comprehensive insight into the origins of enantioselectivity in this system but should also aid future development of related photomediated CPA-catalyzed reactions.
Collapse
Affiliation(s)
- Sojung F. Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jordan P. Liles
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Michaelyn C. Lux
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States; Present Address: Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Hojoon Park
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Justin Jurczyk
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States; Present Address: Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Yasuki Soda
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States; Present Address: Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States; Present Address: The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Charles S. Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Wang LS, Song YM, Zhou Y, Tang YX, Wu CY, Yu ZC, Zhou H, Zheng KL, Wu AX. Iodine as Polarity-Reversal Catalyst: Synthesis of a Fused Heterocycle with Contiguous Stereocenters. Org Lett 2025; 27:91-96. [PMID: 39704482 DOI: 10.1021/acs.orglett.4c03936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
We report an unconventional I2-catalyzed cascade reaction for the synthesis of angular triquinane derivatives with a fused heterocycle skeleton, leveraging enaminones and anilines as simple acyclic precursors. The key to success lies in I2 functioning as a polar-reversal catalyst, which alters the reactivity at the α-position of the enaminone and facilitates the first hexa-functionalization of an enaminone along with the formation of highly congested continuous stereocenters.
Collapse
Affiliation(s)
- Li-Sheng Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yu-Man Song
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - You Zhou
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yong-Xing Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Chun-Yan Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Zhi-Cheng Yu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Hui Zhou
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Kai-Lu Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, P. R. China
| | - An-Xin Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
20
|
Zhou Y, Lei SG, Abudureheman B, Wang LS, Yu ZC, Xiang JC, Wu AX. Transforming an azaarene into the spine of fusedbicyclics via cycloaddition-induced scaffold hopping of 5-Hydroxypyrazoles. Nat Commun 2024; 15:10907. [PMID: 39738133 DOI: 10.1038/s41467-024-55312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Skeleton editing for heteroarenes, especially pyrazoles, is challenging and remains scarce because these non-strained aromatics exhibit inert reactivities, making them relatively inactive for performing a dearomatization/cleavage sequence. Here, we disclose a cycloaddition-induced scaffold hopping of 5-hydroxypyrazoles to access the pyrazolopyridopyridazin-6-one skeleton through a single-operation protocol. By converting a five-membered aza-arene into a five-unit spine of a 6/6 fused-bicyclic, this work unlocks a ring-opening reactivity of the pyrazole core that involves a formal C = N bond cleavage while retaining the highly reactive N-N bond in the resulting product. A [4 + 2] cycloaddition of a temporarily dearomatized 5-hydroxypyrrole with an in situ generated aza-1,3-diene, followed by oxidative C-N bond cleavage, constitutes the domino pathway. A library of pyrazolopyridopyridazin-6-ones, which are medicinally relevant nitrogen-atom-rich tricyclics, is obtained efficiently from readily available materials.
Collapse
Affiliation(s)
- You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Shuang-Gui Lei
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Baihetiguli Abudureheman
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Li-Sheng Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Zhi-Cheng Yu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, P. R. China.
| |
Collapse
|
21
|
Yu T, Ni H, Fan S, Jiang J, You S, Deng C. Highly Regioselective Modular Assembly of 3-Phosphonyl Polysubstituted Pyridines through Radical Cascade Cyclization of 1,5-Enynes with Phosphine Oxide by Photoinitiation. Org Lett 2024; 26:10729-10734. [PMID: 39641439 DOI: 10.1021/acs.orglett.4c03559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A series of 3-phosphonyl polysubstituted pyridine were first synthesized by photocatalysis, combining a phosphonyl radical cascade reaction, Boc deprotection, and aromatization. This strategy can avoid the difficulties of activating the C3-H bond on pyridine to synthesize 3-phosphonylpyridine under mild conditions. Furthermore, by constructing different enynes, we can achieve the metal-free modular synthesis of 3-phosphonyl polysubstituted pyridine, which will be transferred into a new type of phosphine ligand. This is of significance for organometallic catalysis. The regioselective control and detailed reaction mechanism of the cascade reaction are explained by DFT calculations.
Collapse
Affiliation(s)
- Tongyan Yu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Hairui Ni
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Siyan Fan
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jing Jiang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Siliang You
- State Key laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chao Deng
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
22
|
Bhatti P, Gupta A, Chaudhari SB, Valmiki RK, Laha JK, Manna S. Skeletal Editing via Transition-Metal-Catalyzed Nitrene Insertion. CHEM REC 2024; 24:e202400184. [PMID: 39607383 DOI: 10.1002/tcr.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Metal-nitrenes are valuable reactive intermediates for synthesis and are widely used to construct biologically relevant scaffolds, complexes and functionalized molecules. The ring expansion of cyclic molecules via single-nitrogen-atom insertion via nitrene or metal-nitrenoid intermediates has emerged as a promising modern strategy for driving advantageous nitrogen-rich compound synthesis. In recent years, the catalytic insertion of a single nitrogen atom into carbocycles, leading to N-heterocycles, has become an important focus of modern synthetic approaches with applications in medicinal chemistry, materials science, and industry. Catalytic single-nitrogen-atom insertions have been increasing in prominence in modern organic synthesis due to their capability to construct high-value added nitrogen-containing heterocycles from simple feedstocks. In this review, we will discuss the rapidly growing field of skeletal editing via single-nitrogen-atom insertion using transition metal catalysis to access nitrogen-containing heterocycles, with a focus on nitrogen insertion across a wide spectrum of carbocycles.
Collapse
Affiliation(s)
- Pratibha Bhatti
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Shubham B Chaudhari
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Rahul K Valmiki
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Srimanta Manna
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| |
Collapse
|
23
|
Gauthier M, Whittingham JBM, Hasija A, Tetlow DJ, Leigh DA. Skeletal Editing of Mechanically Interlocked Molecules: Nitrogen Atom Deletion from Crown Ether-Dibenzylammonium Rotaxanes. J Am Chem Soc 2024; 146:29496-29502. [PMID: 39431981 PMCID: PMC11528408 DOI: 10.1021/jacs.4c09066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/31/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Removing the nitrogen atom from secondary amines while simultaneously linking the remaining fragments is a powerful form of late-stage skeletal editing. Here, we report its use for the deletion of the nitrogen atom of the dibenzylammonium template used to assemble crown ether rotaxanes. The reaction uses an anomeric amide that activates secondary amines to generate a carbon-carbon bond that replaces the amine nitrogen. Despite the potential for dethreading of the intermediate diradical pair, the nitrogen atom was successfully deleted from a series of rotaxane axles as long as the macrocycle could access coconformations that did not inhibit the reaction of the amine group. The skeletally edited interlocked molecules were obtained directly from the parent crown ether-dibenzylammonium rotaxanes in modest yields (23-36%) and characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. One skeletally edited rotaxane shows a network of weak CH···O hydrogen bonds between the crown ether and benzylic methylene groups of the axle in the solid state, in place of the crown ether-ammonium binding motif used to assemble the parent, unedited, rotaxane.
Collapse
Affiliation(s)
- Maxime Gauthier
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Avantika Hasija
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Daniel J. Tetlow
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
24
|
Dong X, Shao Y, Liu Z, Huang X, Xue XS, Chen Y. Radical 6-Endo Addition Enables Pyridine Synthesis under Metal-Free Conditions. Angew Chem Int Ed Engl 2024; 63:e202410297. [PMID: 39031447 DOI: 10.1002/anie.202410297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Metal-free synthesis of heterocycles is highly sought after in the pharmaceutical industry and has garnered widespread attention due to eliminating the need to remove trace metal catalysts from the reaction. We report a radical 6-endo addition method for pyridine synthesis from cyclopropylamides and alkynes under metal-free conditions. Various terminal and substituted alkynes are inserted as C2 units into cyclopropylamides to synthesize versatile pyridines with 57 examples. Mechanistic investigations and computational studies indicate the unprecedented 6-endo-trig addition of vinyl radicals to the imine nitrogen atom rather than the conventional 5-exo-trig addition to the imine carbon atom, in which the hypervalent iodine(III) plays a critical role. This reaction easily scales up with excellent functional group compatibility and suits the late-stage pyridine installation on complex molecules.
Collapse
Affiliation(s)
- Xiaojuan Dong
- Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yingbo Shao
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xia Huang
- Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai, 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
25
|
Xiao WJ, Li CX, Lv JY, Xu S, Shi WX, Su XC, Xue JY, Huang BQ, Zou Y, Yan M, Zhang XJ. Molecular Editing of Pyrroles to Benzenes/Naphthalenes by N 2O Deletion. Angew Chem Int Ed Engl 2024; 63:e202411166. [PMID: 39008335 DOI: 10.1002/anie.202411166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
A molecular editing reaction for converting pyrrole rings into benzene rings through a sequential pathway of Diels-Alder and cheletropic reactions was developed. The nitrogen atom in a N-bridged intermediate is eliminated in the form of N2O by a strain-releasing pathway, ultimately leading to the formation of substituted benzene and naphthalene derivatives.
Collapse
Affiliation(s)
- Wen-Jie Xiao
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng-Xin Li
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing-Yi Lv
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shan Xu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Xia Shi
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao-Can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Ying Xue
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bao-Qin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Zou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
26
|
Qin Q, Zhang L, Wei J, Qiu X, Hao S, An XD, Jiao N. Direct oxygen insertion into C-C bond of styrenes with air. Nat Commun 2024; 15:9015. [PMID: 39424824 PMCID: PMC11489579 DOI: 10.1038/s41467-024-53266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Skeletal editing of single-atom insertion to basic chemicals has been demonstrated as an efficient strategy for the discovery of structurally diversified compounds. Previous endeavors in skeletal editing have successfully facilitated the insertion of boron, nitrogen, and carbon atoms. Given the prevalence of oxygen atoms in biologically active molecules, the direct oxygenation of C-C bonds through single-oxygen-atom insertion like Baeyer-Villiger reaction is of particular significance. Herein, we present an approach for the skeletal modification of styrenes using O2 via oxygen insertion, resulting in the formation of aryl ether frameworks under mild reaction conditions. The broad functional-group tolerance and the excellent chemo- and regioselectivity are demonstrated in this protocol. A preliminary mechanistic study indicates the potential involvement of 1,2-aryl radical migration in this reaction.
Collapse
Affiliation(s)
- Qixue Qin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China.
| | - Liang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China
| | - Shuanghong Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
27
|
Tanimoto H, Tomohiro T. Spot the difference in reactivity: a comprehensive review of site-selective multicomponent conjugation exploiting multi-azide compounds. Chem Commun (Camb) 2024; 60:12062-12100. [PMID: 39302239 DOI: 10.1039/d4cc03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Going beyond the conventional approach of pairwise conjugation between two molecules, the integration of multiple components onto a central scaffold molecule is essential for the development of high-performance molecular materials with multifunctionality. This approach also facilitates the creation of functionalized molecular probes applicable in diverse fields ranging from pharmaceuticals to polymeric materials. Among the various click functional groups, the azido group stands out as a representative click functional group due to its steric compactness, high reactivity, handling stability, and easy accessibility in the context of multi-azide scaffolds. However, the azido groups in multi-azide scaffolds have not been well exploited for site-specific use in molecular conjugation. In fact, multi-azide compounds have been well used to conjugate to the same multiple fragments. To circumvent problems of promiscuous and random coupling of multiple different fragments to multiple azido positions, it is imperative to distinguish specific azido positions and use them orthogonally for molecular conjugation. This review outlines methods and strategies to exploit specific azide positions for molecular conjugation in the presence of multiple azido groups. Illustrative examples covering di-, tri- and tetraazide click scaffolds are included.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
28
|
Zhang BS, Homölle SL, Bauch T, Oliveira JCA, Warratz S, Yuan B, Gou XY, Ackermann L. Electrochemical Skeletal Indole Editing via Nitrogen Atom Insertion by Sustainable Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202407384. [PMID: 38959168 DOI: 10.1002/anie.202407384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Skeletal molecular editing gained considerable recent momentum and emerged as a uniquely powerful tool for late-stage diversifications. Thus far, superstoichiometric amounts of costly hypervalent iodine(III) reagents were largely required for skeletal indole editing. In contrast, we herein show that electricity enables sustainable nitrogen atom insertion reactions to give bio-relevant quinazoline scaffolds without stoichiometric chemical redox-waste product. The transition metal-free electro-editing was enabled by the oxygen reduction reaction (ORR) and proved robust on scale, while tolerating a variety of valuable functional groups.
Collapse
Affiliation(s)
- Bo-Sheng Zhang
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Simon L Homölle
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Tristan Bauch
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - João C A Oliveira
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Svenja Warratz
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Binbin Yuan
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Xue-Ya Gou
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
29
|
Kim D, You J, Lee DH, Hong H, Kim D, Park Y. Photocatalytic furan-to-pyrrole conversion. Science 2024; 386:99-105. [PMID: 39361748 DOI: 10.1126/science.adq6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 10/05/2024]
Abstract
The identity of a heteroatom within an aromatic ring influences the chemical properties of that heterocyclic compound. Systematically evaluating the effect of a single atom, however, poses synthetic challenges, primarily as a result of thermodynamic mismatches in atomic exchange processes. We present a photocatalytic strategy that swaps an oxygen atom of furan with a nitrogen group, directly converting the furan into a pyrrole analog in a single intermolecular reaction. High compatibility was observed with various furan derivatives and nitrogen nucleophiles commonly used in drug discovery, and the late-stage functionalization furnished otherwise difficult-to-access pyrroles from naturally occurring furans of high molecular complexity. Mechanistic analysis suggested that polarity inversion through single electron transfer initiates the redox-neutral atom exchange processes at room temperature.
Collapse
Affiliation(s)
- Donghyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaehyun You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Da Hye Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hojin Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
30
|
Botlik BB, Weber M, Ruepp F, Kawanaka K, Finkelstein P, Morandi B. Streamlining the Synthesis of Pyridones through Oxidative Amination of Cyclopentenones. Angew Chem Int Ed Engl 2024; 63:e202408230. [PMID: 38934574 DOI: 10.1002/anie.202408230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Herein we report the development of an oxidative amination process for the streamlined synthesis of pyridones from cyclopentenones. Cyclopentenone building blocks can undergo in situ silyl enol ether formation, followed by the introduction of a nitrogen atom into the carbon skeleton with successive aromatisation to yield pyridones. The reaction sequence is operationally simple, rapid, and carried out in one pot. The reaction proceeds under mild conditions, exhibits broad functional group tolerance, complete regioselectivity, and is well scalable. The developed method provides facile access to the synthesis of 15N-labelled targets, industrially relevant pyridone products and their derivatives in a fast and efficient way.
Collapse
Affiliation(s)
- Bence B Botlik
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Micha Weber
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Florian Ruepp
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Kazuki Kawanaka
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Patrick Finkelstein
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| |
Collapse
|
31
|
Cai CY, Chen SJ, Merchant RR, Kanda Y, Qin T. C3 Selective Hydroxylation of Pyridines via Photochemical Valence Isomerization of Pyridine N-Oxides. J Am Chem Soc 2024; 146:24257-24264. [PMID: 39172734 DOI: 10.1021/jacs.4c10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The C-H hydroxylation of the pyridine C3 position is a highly desirable transformation but remains a great challenge due to the inherent electronic properties of this heterocycle core which bring difficulties in chemical reactivity and regioselectivity. Herein we present an efficient method for formal C3 selective hydroxylation of pyridines via photochemical valence isomerization of pyridine N-oxides. This metal-free transformation features operational simplicity and compatibility with a diverse array of functional groups, and the resulting hydroxylated products are amenable to further elaboration to synthetically useful building blocks. The synthetic utility of this strategy is further demonstrated in the effective late-stage functionalization of pyridine-containing medicinally relevant molecules and versatile derivatizations of 3-pyridinols.
Collapse
Affiliation(s)
- Chen-Yan Cai
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Yuzuru Kanda
- Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
32
|
Wu FP, Lenz M, Suresh A, Gogoi AR, Tyler JL, Daniliuc CG, Gutierrez O, Glorius F. Nitrogen-to-functionalized carbon atom transmutation of pyridine. Chem Sci 2024; 15:d4sc04413d. [PMID: 39246332 PMCID: PMC11372446 DOI: 10.1039/d4sc04413d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
The targeted and selective replacement of a single atom in an aromatic system represents a powerful strategy for the rapid interconversion of molecular scaffolds. Herein, we report a pyridine-to-benzene transformation via nitrogen-to-carbon skeletal editing. This approach proceeds via a sequence of pyridine ring-opening, imine hydrolysis, olefination, electrocyclization, and aromatization to achieve the desired transmutation. The most notable features of this transformation are the ability to directly install a wide variety of versatile functional groups in the benzene scaffolding, including ester, ketone, amide, nitrile, and phosphate ester fragments, as well as the inclusion of meta-substituted pyridines which have thus far been elusive for related strategies.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Madina Lenz
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Adhya Suresh
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Jasper L Tyler
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
33
|
Boswell BR, Zhao Z, Gonciarz RL, Pandya KM. Regioselective Pyridine to Benzene Edit Inspired by Water-Displacement. J Am Chem Soc 2024; 146:19660-19666. [PMID: 38996188 DOI: 10.1021/jacs.4c05999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Late-stage derivatization of drug-like functional groups can accelerate drug discovery efforts by swiftly exchanging hydrogen-bond donors with acceptors, or by modulating key physicochemical properties like logP, solubility, or polar surface area. A proven derivatization strategy to improve ligand potency is to extend the ligand to displace water molecules that are mediating the interactions with a receptor. Inspired by this application, we developed a method to regioselectively transmute the nitrogen atom from pyridine into carbon bearing an ester, a flexible functional group handle. We applied this method to a variety of substituted pyridines, as well as late-stage transformation of FDA-approved drugs.
Collapse
Affiliation(s)
- Benjamin R Boswell
- Discovery Chemistry, Exelixis Inc., Alameda, California 94502, United States
| | - Zhensheng Zhao
- Discovery Chemistry, Exelixis Inc., Alameda, California 94502, United States
| | - Ryan L Gonciarz
- Discovery Chemistry, Exelixis Inc., Alameda, California 94502, United States
| | - Keyur M Pandya
- Pharmaceutical Operations & Supply Chain, Exelixis Inc., Alameda, California 94502, United States
| |
Collapse
|
34
|
Giricheva MA, Vorobiev IG, Belikov AA, Fukin GK, Budruev AV. Synthesis of 1,3-Dicarbonyl Azepines via Photoinitiated Reactions of Aryl Azides with Carbon-Based Nucleophiles. J Org Chem 2024; 89:10283-10292. [PMID: 38981920 DOI: 10.1021/acs.joc.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A photoinduced one-pot method for the synthesis of azepines by the reaction of aryl azides with 1,3-dicarbonyl compounds under weakly basic conditions is described. This method offers a simple route for the synthesis of 1,3-dicarbonyl-substituted azepines in good to excellent yields and high regioselectivity and was tested on 1,3-dicarbonyl compounds with different acidity levels. The resulting azepines have electrophilic and nucleophilic centers of varying degrees of activity, which facilitate reactions leading to further structural transformations.
Collapse
Affiliation(s)
- Marina A Giricheva
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
| | - Ivan G Vorobiev
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
| | - Alexey A Belikov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str, Nizhny Novgorod GSP-445, Russia
| | - Georgy K Fukin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str, Nizhny Novgorod GSP-445, Russia
| | - Andrei V Budruev
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
| |
Collapse
|
35
|
Zhang Z, Li Q, Cheng Z, Jiao N, Zhang C. Selective nitrogen insertion into aryl alkanes. Nat Commun 2024; 15:6016. [PMID: 39019881 PMCID: PMC11255249 DOI: 10.1038/s41467-024-50383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Molecular structure-editing through nitrogen insertion offers more efficient and ingenious pathways for the synthesis of nitrogen-containing compounds, which could benefit the development of synthetic chemistry, pharmaceutical research, and materials science. Substituted amines, especially nitrogen-containing alkyl heterocyclic compounds, are widely found in nature products and drugs. Generally, accessing these compounds requires multiple steps, which could result in low efficiency. In this work, a molecular editing strategy is used to realize the synthesis of nitrogen-containing compounds using aryl alkanes as starting materials. Using derivatives of O-tosylhydroxylamine as the nitrogen source, this method enables precise nitrogen insertion into the Csp2-Csp3 bond of aryl alkanes. Notably, further synthetic applications demonstrate that this method could be used to prepare bioactive molecules with good efficiency and modify the molecular skeleton of drugs. Furthermore, a plausible reaction mechanism involving the transformation of carbocation and imine intermediates has been proposed based on the results of control experiments.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Qi Li
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Chun Zhang
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
36
|
Villa-Reyna AL, Perez-Velazquez M, González-Félix ML, Gálvez-Ruiz JC, Gonzalez-Mosquera DM, Valencia D, Ballesteros-Monreal MG, Aguilar-Martínez M, Leyva-Peralta MA. The Structure-Antiproliferative Activity Relationship of Pyridine Derivatives. Int J Mol Sci 2024; 25:7640. [PMID: 39062883 PMCID: PMC11276865 DOI: 10.3390/ijms25147640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyridine, a compound with a heterocyclic structure, is a key player in medicinal chemistry and drug design. It is widely used as a framework for the design of biologically active molecules and is the second most common heterocycle in FDA-approved drugs. Pyridine is known for its diverse biological activity, including antituberculosis, antitumor, anticoagulant, antiviral, antimalarial, antileishmania, anti-inflammatory, anti-Alzheimer's, antitrypanosomal, antimalarial, vasodilatory, antioxidant, antimicrobial, and antiproliferative effects. This review, spanning from 2022 to 2012, involved the meticulous identification of pyridine derivatives with antiproliferative activity, as indicated by their minimum inhibitory concentration values (IC50) against various cancerous cell lines. The aim was to determine the most favorable structural characteristics for their antiproliferative activity. Using computer programs, we constructed and calculated the molecular descriptors and analyzed the electrostatic potential maps of the selected pyridine derivatives. The study found that the presence and positions of the -OMe, -OH, -C=O, and NH2 groups in the pyridine derivatives enhanced their antiproliferative activity over the cancerous cellular lines studied. Conversely, pyridine derivatives with halogen atoms or bulky groups in their structures exhibited lower antiproliferative activity.
Collapse
Affiliation(s)
- Ana-Laura Villa-Reyna
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Martin Perez-Velazquez
- Departamento de Investigaciones Científicas y Tecnológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico; (M.P.-V.); (M.L.G.-F.)
| | - Mayra Lizett González-Félix
- Departamento de Investigaciones Científicas y Tecnológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico; (M.P.-V.); (M.L.G.-F.)
| | - Juan-Carlos Gálvez-Ruiz
- Departamento de Ciencias Químico Biológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico;
| | - Dulce María Gonzalez-Mosquera
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central Marta Abreu Las Villitas, Santa Clara, Cuba;
| | - Dora Valencia
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Manuel G. Ballesteros-Monreal
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Milagros Aguilar-Martínez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Mario-Alberto Leyva-Peralta
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| |
Collapse
|
37
|
Rentería-Gómez Á, Gutierrez O. Atom-swap chemistry speeds synthesis of compounds for drug discovery. Nature 2024; 631:30-31. [PMID: 38961157 DOI: 10.1038/d41586-024-02017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
|
38
|
Uhlenbruck BJH, Josephitis CM, de Lescure L, Paton RS, McNally A. A deconstruction-reconstruction strategy for pyrimidine diversification. Nature 2024; 631:87-93. [PMID: 38697196 PMCID: PMC11421208 DOI: 10.1038/s41586-024-07474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Structure-activity relationship (SAR) studies are fundamental to drug and agrochemical development, yet only a few synthetic strategies apply to the nitrogen heteroaromatics frequently encountered in small molecule candidates1-3. Here we present an alternative approach in which we convert pyrimidine-containing compounds into various other nitrogen heteroaromatics. Transforming pyrimidines into their corresponding N-arylpyrimidinium salts enables cleavage into a three-carbon iminoenamine building block, used for various heterocycle-forming reactions. This deconstruction-reconstruction sequence diversifies the initial pyrimidine core and enables access to various heterocycles, such as azoles4. In effect, this approach allows heterocycle formation on complex molecules, resulting in analogues that would be challenging to obtain by other methods. We anticipate that this deconstruction-reconstruction strategy will extend to other heterocycle classes.
Collapse
Affiliation(s)
| | | | - Louis de Lescure
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
39
|
Li L, Wang D, Zhang Y, Liu J, Wang H, Luan X. Diversification of Naphthol Skeletons Triggered by Aminative Dearomatization. Org Lett 2024; 26:4910-4915. [PMID: 38818971 DOI: 10.1021/acs.orglett.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A silver-catalyzed aminative dearomatization of naphthols has been developed and integrated into a stepwise approach for subsequent skeletal diversifications including ring expansion, ring opening, ring contraction, and atom transmutation of aryl scaffolds. This approach enables the synthesis of a diverse array of azepinones, unsaturated amides, isoquinolines, and indenones from naphthol substrates. Its application in the synthesis of bioactive and functional molecules as well as the conversion of complex molecular skeletons underscores its broad potential applicability. Mechanistic investigations suggest the intermediacy of the dearomatized intermediates.
Collapse
Affiliation(s)
- Linqiang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Dong Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Yue Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Jingjing Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Han Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
40
|
Liu S, Yang Y, Song Q, Liu Z, Lu Y, Wang Z, Sivaguru P, Bi X. Tunable molecular editing of indoles with fluoroalkyl carbenes. Nat Chem 2024; 16:988-997. [PMID: 38443494 DOI: 10.1038/s41557-024-01468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Building molecular complexity from simple feedstocks through precise peripheral and skeletal modifications is central to modern organic synthesis. Nevertheless, a controllable strategy through which both the core skeleton and the periphery of an aromatic heterocycle can be modified with a common substrate remains elusive, despite its potential to maximize structural diversity and applications. Here we report a carbene-initiated chemodivergent molecular editing of indoles that allows both skeletal and peripheral editing by trapping an electrophilic fluoroalkyl carbene generated in situ from fluoroalkyl N-triftosylhydrazones. A variety of fluorine-containing N-heterocyclic scaffolds have been efficiently achieved through tunable chemoselective editing reactions at the skeleton or periphery of indoles, including one-carbon insertion, C3 gem-difluoroolefination, tandem cyclopropanation and N1 gem-difluoroolefination, and cyclopropanation. The power of this chemodivergent molecular editing strategy has been highlighted through the modification of the skeleton or periphery of natural products in a controllable and chemoselective manner. The reaction mechanism and origins of the chemo- and regioselectivity have been probed by both experimental and theoretical methods.
Collapse
Affiliation(s)
- Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Ying Lu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Zhanjing Wang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | | | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
41
|
Falcone NA, He S, Hoskin JF, Mangat S, Sorensen EJ. N-Oxide-to-Carbon Transmutations of Azaarene N-Oxides. Org Lett 2024; 26:4280-4285. [PMID: 38739528 DOI: 10.1021/acs.orglett.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Reactions that change the identity of an atom within a ring system are emerging as valuable tools for the site-selective editing of molecular structures. Herein, we describe the expansion of an underdeveloped transformation that directly converts azaarene-derived N-oxides to all-carbon arenes. This ring transmutation exhibits good functional group tolerance and replaces the N-oxide moiety with either unsubstituted, substituted, or isotopically labeled carbon atoms in a single laboratory operation.
Collapse
Affiliation(s)
- Nicholas A Falcone
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sam He
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - John F Hoskin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sandeep Mangat
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
42
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
43
|
Lu H, Zhang Y, Wang XH, Zhang R, Xu PF, Wei H. Carbon-nitrogen transmutation in polycyclic arenol skeletons to access N-heteroarenes. Nat Commun 2024; 15:3772. [PMID: 38704373 PMCID: PMC11069502 DOI: 10.1038/s41467-024-48265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
Developing skeletal editing tools is not a trivial task, and realizing the corresponding single-atom transmutation in a ring system without altering the ring size is even more challenging. Here, we introduce a skeletal editing strategy that enables polycyclic arenols, a highly prevalent motif in bioactive molecules, to be readily converted into N-heteroarenes through carbon-nitrogen transmutation. The reaction features selective nitrogen insertion into the C-C bond of the arenol frameworks by azidative dearomatization and aryl migration, followed by ring-opening, and ring-closing (ANRORC) to achieve carbon-to-nitrogen transmutation in the aromatic framework of the arenol. Using widely available arenols as N-heteroarene precursors, this alternative approach allows the streamlined assembly of complex polycyclic heteroaromatics with broad functional group tolerance. Finally, pertinent transformations of the products, including synthesis complex biheteroarene skeletons, were conducted and exhibited significant potential in materials chemistry.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Yu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Xiu-Hong Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Ran Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
44
|
Cheng Q, Bhattacharya D, Haring M, Cao H, Mück-Lichtenfeld C, Studer A. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat Chem 2024; 16:741-748. [PMID: 38238464 PMCID: PMC11087273 DOI: 10.1038/s41557-023-01428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 05/12/2024]
Abstract
Skeletal editing is a straightforward synthetic strategy for precise substitution or rearrangement of atoms in core ring structures of complex molecules; it enables quick diversification of compounds that is not possible by applying peripheral editing strategies. Previously reported skeletal editing of common arenes mainly relies on carbene- or nitrene-type insertion reactions or rearrangements. Although powerful, efficient and applicable to late-stage heteroarene core structure modification, these strategies cannot be used for skeletal editing of pyridines. Here we report the direct skeletal editing of pyridines through atom-pair swap from CN to CC to generate benzenes and naphthalenes in a modular fashion. Specifically, we use sequential dearomatization, cycloaddition and rearomatizing retrocycloaddition reactions in a one-pot sequence to transform the parent pyridines into benzenes and naphthalenes bearing diversified substituents at specific sites, as defined by the cycloaddition reaction components. Applications to late-stage skeletal diversification of pyridine cores in several drugs are demonstrated.
Collapse
Affiliation(s)
- Qiang Cheng
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | | | - Malte Haring
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Hui Cao
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
45
|
Mykura R, Sánchez-Bento R, Matador E, Duong VK, Varela A, Angelini L, Carbajo RJ, Llaveria J, Ruffoni A, Leonori D. Synthesis of polysubstituted azepanes by dearomative ring expansion of nitroarenes. Nat Chem 2024; 16:771-779. [PMID: 38273027 DOI: 10.1038/s41557-023-01429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
The synthesis of functionalized nitrogen heterocycles is integral to discovering, manufacturing and evolving high-value materials. The availability of effective strategies for heterocycle synthesis often biases the frequency of specific ring systems over others in the core structures of bioactive leads. For example, while the six- and five-membered piperidine and pyrrolidine are widespread in medicinal chemistry libraries, the seven-membered azepane is essentially absent and this leaves open a substantial area of three-dimensional chemical space. Here we report a strategy to prepare complex azepanes from simple nitroarenes by photochemical dearomative ring expansion centred on the conversion of the nitro group into a singlet nitrene. This process is mediated by blue light, occurs at room temperature and transforms the six-membered benzenoid framework into a seven-membered ring system. A following hydrogenolysis provides the azepanes in just two steps. We have demonstrated the utility of the strategy with the synthesis of several azepane analogues of piperidine drugs.
Collapse
Affiliation(s)
- Rory Mykura
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | | | - Esteban Matador
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Sevilla, Spain
| | - Vincent K Duong
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Ana Varela
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | | | - Rodrigo J Carbajo
- In Silico Discovery, Therapeutics Discovery, Janssen Research & Development, Janssen-Cilag S.A., Toledo, Spain
| | - Josep Llaveria
- Global Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen-Cilag S.A., Toledo, Spain
| | - Alessandro Ruffoni
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany.
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
46
|
Niu C, Zhang Z, Li Q, Cheng Z, Jiao N, Zhang C. Selective Ring-Opening Amination of Isochromans and Tetrahydroisoquinolines. Angew Chem Int Ed Engl 2024; 63:e202401318. [PMID: 38459760 DOI: 10.1002/anie.202401318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The molecular structure-editing through selective C-C bond cleavage allows for the precise modification of molecular structures and opens up new possibilities in chemical synthesis. By strategically cleaving C-C bonds and editing the molecular structure, more efficient and versatile pathways for the synthesis of complex compounds could be designed, which brings significant implications for drug development and materials science. o-Aminophenethyl alcohols and amines are the essential key motifs in bioactive and functional material molecules. The traditional synthesis of these compounds usually requires multiple steps which could generate inseparable isomers and induce low efficiencies. By leveraging a molecular editing strategy, we herein reported a selective ring-opening amination of isochromans and tetrahydroisoquinolines for the efficient synthesis of o-aminophenethyl alcohols and amines. This innovative chemistry allows for the precise cleavage of C-C bonds under mild transition metal-free conditions. Notably, further synthetic application demonstrated that our method could provide an efficient approach to essential components of diverse bioactive molecules.
Collapse
Affiliation(s)
- Changhao Niu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Zheng Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Qi Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| |
Collapse
|
47
|
Xu X, Zhu YK, Dai CM, Xu J, Jian J. Synthesis and characterization of azaborepin radicals in solid neon through boron-mediated C-N bond cleavage of pyridine. Phys Chem Chem Phys 2024; 26:11048-11055. [PMID: 38528841 DOI: 10.1039/d4cp00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The reactivity of pyridine is a complex topic due to its unique electronic structure. The reactions of atomic boron with pyridine molecules in solid neon have been investigated using matrix isolation infrared absorption spectroscopy. Three products (marked as A, B, and C) were observed and characterized through 10B, D and 15N isotopic substitution pyridine regents as well as quantum chemical calculations. In the reaction, the ground-state boron atom can attack the lone pair electrons of the nitrogen atom in the pyridine molecule, resulting in the formation of a 1-boropyridinyl radical (A). Alternatively, addition to the aromatic π-system of pyridine can occur in a [1,4] type, leading to the formation of a B[η2(1,4)-C5H5N] complex (B). Under UV-visible light (280 < λ < 580 nm) irradiation, these two compounds can further undergo photo-isomerization to form BN-embedded seven-membered azaborepin compounds (C). The observation of species A, B, and the subsequent photo-isomerization to species C is consistent with theoretical predictions, indicating that these reactions are kinetically favorable. This research provides valuable insights into the future design and synthesis of corresponding BN heterocyclic derivatives.
Collapse
Affiliation(s)
- Xin Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Yi-Kang Zhu
- Xiaoshan Campus, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
| | - Chuan-Ming Dai
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Jiaping Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Jiwen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
- Xiaoshan Campus, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
| |
Collapse
|
48
|
Eberle L, Ballmann J. Synthesis of Collidine from Dinitrogen via a Tungsten Nitride. J Am Chem Soc 2024; 146:7979-7984. [PMID: 38489245 DOI: 10.1021/jacs.4c02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The synthesis of pyridines from dinitrogen in homogeneous solution is known to be challenging considering that an N2 cleavage step needs to be combined with two N-C coupling steps. Herein, a tungsten complex bearing a tailor-made 2,2'-(tBu2As)2-substituted tolane ligand scaffold was shown to split N2 to afford the corresponding tungsten nitride, which is not the case for the corresponding (iPr2As)2-substituted derivative. The former nitride was then reacted with 2,4,6-trimethylpyrylium triflate, which led to the formation of a tungsten oxo complex, along with collidine. Over the course of this reaction, the O atom of the pyrylium starting material was replaced with an N atom via a hitherto unprecedented skeletal editing process.
Collapse
Affiliation(s)
- Lukas Eberle
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg Germany
| |
Collapse
|
49
|
Nan J, Huang Q, Men X, Yang S, Wang J, Ma Y. Palladium-catalyzed denitrogenation/vinylation of benzotriazinones with vinylene carbonate. Chem Commun (Camb) 2024; 60:3571-3574. [PMID: 38469678 DOI: 10.1039/d4cc00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Herein, a novel Pd-catalyzed denitrogenation/vinylation of benzotriazinones using vinylene carbonate as the vinylation reagent is reported. This transformation demonstrates an unprecedented skeletal editing approach, effectively converting NN to CC fragments in situ and synthesizing a collection of isoquinolinones with broad-spectrum functional group tolerance. Moreover, the quite concise reaction system and late-stage modification of bioactive molecules comprehensively underscore the practical potential of this protocol.
Collapse
Affiliation(s)
- Jiang Nan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an, 710021, China
| | - Qiong Huang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xinran Men
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shuai Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jing Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
50
|
Zhang Y, Xue JY, Su XC, Xiao WJ, Lv JY, Shi WX, Zou Y, Yan M, Zhang XJ. Skeletal Editing of Benzene Motif: Photopromoted Transannulation for Synthesis of DNA-Encoded Seven-Membered Rings. Org Lett 2024; 26:2212-2217. [PMID: 38452132 DOI: 10.1021/acs.orglett.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
In this report, we present a photopromoted, metal-free transannulation of phenyl azides for the synthesis of DNA-encoded seven-membered rings. The transformation is efficiently achieved through a skeletal editing strategy targeting the benzene motif coupled with a Reversible Adsorption to Solid Support (RASS) strategy. A variety of valuable DNA-encoded seven-membered ring compounds, including DNA-encoded 3H-azepines, azepinones, and unnatural amino acids, are now accessible. Crucially, this DNA-compatible protocol can also be applied for the introduction of complex molecules, as exemplified by Lorcaserin and Betahistine. The selective conversion of readily available phenyl rings into high-value seven-membered rings offers a promising avenue for the construction of diversified and drug-like DNA-encoded library.
Collapse
Affiliation(s)
- Yue Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Ying Xue
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao-Can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Jie Xiao
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing-Yi Lv
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Xia Shi
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Zou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|