1
|
Han Y, He Y, Fu YK, Huang H, Li H, Zhao JP, Wang L, Niu Q, Rosi NL. Crystallographic Visualization of Distinct Iodic Aggregations in Isostructural Metal-Organic Frameworks. J Am Chem Soc 2025. [PMID: 40433838 DOI: 10.1021/jacs.5c04910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Precisely determining the location of adsorbed molecules is essential for illuminating the mechanisms underlying molecular confinement within porous metal-organic frameworks (MOFs). Here, we present the pore-filling and reactive adsorption of iodine in ALP-MOF-1 and its isostructural redox-active ALP-MOF-2. The adsorbed iodine molecules (I2) are unaffected by Zn(II) in ALP-MOF-1 and are exclusively confined into an unusual three-dimensional (3D) iodine aggregation due to the 3D cross-linked pore topology and multiple I2-framework interactions. Conversely, in ALP-MOF-2, the adsorbed I2 enables the oxidation of Co(II) to Co(III), which is accompanied by the reduction of I2 to I3- and the formation of I5- and I2 during continuous I2 loading. Identification of distinct iodine adsorption processes in ALP-MOF-1 and -2 motivated tuning of the metal ion composition to adjust the adsorption mechanism. The iodic aggregations in both MOFs are unambiguously confirmed by the combination of single crystal X-ray diffraction and spectroscopic characterization. The presence of multiple adsorption sites facilitate rapid iodine uptake of ∼179 wt % in ALP-MOF-1 and ∼150 wt % in ALP-MOF-2 within ∼5 h, which could be advantageous for applications requiring rapid and energy-efficient iodine capture.
Collapse
Affiliation(s)
- Yi Han
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yiwen He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yin-Ke Fu
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Advanced Separation Membrane Materials, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Hongdong Li
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiong-Peng Zhao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qian Niu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610017, P. R. China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, P. R China
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Wang J, Qin Y, Carmieli R, Gutkin V, Pikarsky E, Zhang Z, Chen X, Willner I. Enzyme-loaded Fe 3+-doped ZIF-90 particles as catalytic bioreactor hybrids for operating catalytic cascades. Chem Sci 2025:d5sc01972a. [PMID: 40321174 PMCID: PMC12044419 DOI: 10.1039/d5sc01972a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/20/2025] [Indexed: 05/08/2025] Open
Abstract
Fe3+-doped ZIF-90 (Fe3+-ZIF-90), a metal-organic framework (MOF), was synthesized and characterized. The MOF particles reveal peroxidase-like activity reflected by catalyzing the H2O2 oxidation of 3,3',5,5'-tetramethylbenzidine, TMB, to TMB˙+. Integration of the two enzymes, β-galactosidase, β-Gal, and glucose oxidase, GOx, in the Fe3+-ZIF-90 provides an organized framework allowing the operation of a three-catalyst cascade, where the β-Gal-catalyzed oxidation of lactose yields glucose and galactose, and the resulting glucose is aerobically oxidized by GOx to gluconic acid and H2O2, followed by the Fe3+-ZIF-90-catalyzed H2O2 oxidation of TMB to TMB˙+. The coupled bienzyme/nanozyme cascade in the MOFs is ca. 5-fold enhanced, as compared to a homogeneous mixture of the catalytic constituents. The enhanced catalytic activity of the enzyme cascades in the MOFs is attributed to the confined reaction framework, allowing product channeling across the multienzyme constituents and overcoming diffusion barriers. Moreover, the enzymes, acetylcholine esterase, AChE, and choline oxidase, ChOx, are encapsulated in the confined porous Fe3+-ZIF-90 particles. The catalytic cascade where the neurotransmitter acetylcholine is hydrolyzed by AChE followed by the stepwise ChOx-catalyzed oxidation of choline to betaine and H2O2, and the Fe3+-ZIF-90-catalyzed oxidation of TMB to colored TMB˙+ by H2O2 is demonstrated. The three-catalyst cascade is ca. 5-fold enhanced as compared to the mixture of separated catalysts. The integrated three-catalyst AChE/ChOx/Fe3+-ZIF-90 particles are applied as colorimetric sensors detecting the neurotransmitter acetylcholine and probing AChE inhibitors. The novelty of the systems is reflected by the assembly of multienzyme catalytic Fe3+-ZIF-90 hybrids in confined environments as bioreactor frameworks driving effective biocatalytic cascades.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
- School of the Environment and Safety Engineering, Jiangsu University Zhenjiang 212013 China
| | - Yunlong Qin
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 76100 Israel
| | - Vitaly Gutkin
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Eli Pikarsky
- Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem 91120 Israel
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University Zhenjiang 212013 China
| | - Xinghua Chen
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
3
|
Geng Y, Gao Y, Gao P, Zhang J, Tang X, Dong J, Jiao J, Niu H, Gong W, Cui Y. Manipulating Hydrogen-Bonding Donor/Acceptor in Ultra-Robust Isoreticular Zr(IV) Metal-Organic Frameworks for Efficient Regulation of Water Sorption Inflection Point and Steepness. J Am Chem Soc 2025; 147:7663-7670. [PMID: 39977855 DOI: 10.1021/jacs.4c17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The development of porous materials exhibiting steep and stepwise adsorption of water vapor at desired humidity is crucial for implementing diverse applications such as humidity control, heat allocation, and atmospheric water harvesting. The precise molecular-level elucidation of structural characteristics and chemical components that dictate the water sorption behaviors in confined nanospaces, metal-organic frameworks (MOFs) in particular, is fundamentally important, but this has yet to be largely explored. In this work, by leveraging the isoreticular principle, we crafted two pairs of isostructural Zr-MOFs with linker backbones of benzene and pyrazine acting as hydrogen-bonding donor and acceptor, respectively. The outstanding water sorption cyclic durability of the four Zr-MOFs permits persuasive investigation of the correlation of the water sorption inflection point and steepness (the two central figures-of-merit for water sorption) with the linker functionality. The two pyrazine-carrying Zr-MOFs both show steep water uptake at lower relative pressure and slightly decreased steepness, which are quantitatively described by the Dubinin-Astakhov relation. We deciphered the privileged water clusters through single-crystal X-ray diffraction studies in which the pyrazine moiety formed stronger hydrogen-bonding interactions with guest water molecules and favored the formation of water pentamers instead of hexamers that are observed in the benzene analog. The hydrogen-bonding donor/acceptor manipulation approach presented in this work may facilitate future research endeavors focusing on molecular attribute engineering in predeterminedly ultrawater-resistant MOF platforms for efficient regulation of water sorption behaviors toward customized applications.
Collapse
Affiliation(s)
- Yuan Geng
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui University Hefei 230601, PR China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfu Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Jiao
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Helin Niu
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui University Hefei 230601, PR China
| | - Wei Gong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Martinez-Martinez A, Albalad J, Resines-Urien E, Sañudo EC, Mariano AL, Fabelo O, Rodríguez-Velamazán JA, Poloni R, Maspoch D, Costa JS. Decoding Framework Dynamics in a Spin Crossover Flexible Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411201. [PMID: 39901475 DOI: 10.1002/smll.202411201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Indexed: 02/05/2025]
Abstract
Functional spin crossover (SCO) metal-organic frameworks (MOFs) hold promise for miniaturized spin-based devices due to their tuneable molecule-based properties near room temperature. SCO describes the phenomenon where transition metal ions switch between high spin (HS) and low spin (LS) states upon external stimuli. However, even simple guest molecules like water can significantly alter the properties of these materials. Understanding the interplay between SCO and these molecules is therefore crucial. This work investigates this interplay in a fascinating 3D Fe(II) SCO-MOF, recently reported to exhibit reversible conductivity even in bulk. A combined experimental and computational approach is employed to explore how guest molecule uptake/release influences SCO dynamics including a transition from partial HS/LS to a fully LS state at high temperatures, (named reverse SCO) and ligand disorder-order behavior. The findings reveal a solid-state mechanism that differs from those previously described.
Collapse
Affiliation(s)
| | - Jorge Albalad
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - E Carolina Sañudo
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universidad de Barcelona, C/Martí i Franqués 1-11, Barcelona, 08028, Spain
- IN2UB Institute de Nanociencia i Nanotecnologia, Universitat de Barcelona C/Marti i Franques 1-11, Barcelona, 08028, Spain
| | | | - Oscar Fabelo
- Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, Grenoble, Cedex 938042, France
| | | | - Roberta Poloni
- CNRS, SIMAP, Univ. Grenoble Alpes, Grenoble, 38000, France
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | | |
Collapse
|
5
|
Cao H, Shi L, Xiong Z, Zhu H, Wang H, Wang K, Yang Z, Zhang HF, Liu L, O'Keeffe M, Li M, Chen Z. Two-Periodic MoS 2-Type Metal-Organic Frameworks with Intrinsic Intralayer Porosity for High-Capacity Water Sorption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414362. [PMID: 39568295 DOI: 10.1002/adma.202414362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Indexed: 11/22/2024]
Abstract
2D metal-organic frameworks (2D-MOFs) are an important class of functional porous materials. However, the low porosity and surface area of 2D-MOFs have greatly limited their functionalities and applications. Herein, the rational synthesis of a class of mos-MOFs with molybdenum disulfide (mos) net based on the assembly of trinuclear metal clusters and 3-connected tripodal organic ligands is reported. The non-crystallographic (3,6)-connected mos net, different from the 3-connected hcb net of graphene, offers abundant intralayer voids courtesy of the split of one node into two. Indeed, mos-MOFs exhibit high apparent Brunauer-Emmett-Teller surface areas, significantly superior to those of other 2D-MOF analogs. Markedly, hydrolytically stable Cr-mos-MOF-1 displays an impressive water vapor uptake of 0.75 g g-1 at 298 K and P/P0 = 0.9, among the highest in 2D-MOFs. The combined water adsorption and X-ray diffraction study reveal the water adsorption mechanisms, suggesting the importance of intralayer porosities of mos-MOFs for high-performance water capture. This study paves the way for a reliable approach to synthesizing 2D-MOFs with high porosity and surface areas for diverse applications.
Collapse
Affiliation(s)
- Honghao Cao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhangyi Xiong
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Haiyun Zhu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Hao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Kun Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhenning Yang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Hai-Feng Zhang
- College of Chemistry and Chemical Engineering, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, P. R. China
| | - Lingmei Liu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Michael O'Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Mian Li
- College of Chemistry and Chemical Engineering, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, P. R. China
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
6
|
Marazani LG, Gascon-Perez V, Pathak A, Tricarico M, Tan JC, Zaworotko MJ, Wheatley AEH, Makhubela BCE, Mehlana G. Water sorption studies with mesoporous multivariate monoliths based on UiO-66. MATERIALS ADVANCES 2024; 5:7679-7689. [PMID: 39247387 PMCID: PMC11379059 DOI: 10.1039/d4ma00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Hierarchical linker thermolysis has been used to enhance the porosity of monolithic UiO-66-based metal-organic frameworks (MOFs) containing 30 wt% 2-aminoterephthalic acid (BDC-NH2) linker. In this multivariate (i.e. mixed-linker) MOF, the thermolabile BDC-NH2 linker decomposed at ∼350 °C, inducing mesopore formation. The nitrogen sorption of these monolithic MOFs was probed, and an increase in gas uptake of more than 200 cm3 g-1 was observed after activation by heating, together with an increase in pore volume and mean pore width, indicating the creation of mesopores. Water sorption studies were conducted on these monoliths to explore their performance in that context. Before heating, monoUiO-66-NH2-30%-B showed maximum water vapour uptake of 61.0 wt%, which exceeded that reported for either parent monolith, while the highly mesoporous monolith (monoUiO-66-NH2-30%-A) had a lower maximum water vapour uptake of 36.2 wt%. This work extends the idea of hierarchical linker thermolysis, which has been applied to powder MOFs, to monolithic MOFs for the first time and supports the theory that it can enhance pore sizes in these materials. It also demonstrates the importance of hydrophilic functional groups (in this case, NH2) for improving water uptake in materials.
Collapse
Affiliation(s)
- Linia Gedi Marazani
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University P Bag 9055 Senga Road Gweru Zimbabwe
| | - Victoria Gascon-Perez
- Bernal Institute, Department of Chemical Sciences, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Ayush Pathak
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Michele Tricarico
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Jin-Chong Tan
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Andrew E H Wheatley
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Banothile C E Makhubela
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, Faculty of Science, University of Johannesburg Auckland Park 2006 South Africa
| | - Gift Mehlana
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University P Bag 9055 Senga Road Gweru Zimbabwe
| |
Collapse
|
7
|
Wei S, Zhang Y, Tan H, Xia Z, Zhai L, Hu J, Yang Q, Xie G, Chen Z, Chen S. In Situ MOF-74-Pyrolysis-Generated Porous Carbon Supporting Spinel Cu 0.15Co 2.85O 4/C Boosts Ammonium Perchlorate Accelerating Decomposition: Precise Cu Doping Modulating Oxygen Vacancy Concentration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400712. [PMID: 38770994 DOI: 10.1002/smll.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/07/2024] [Indexed: 05/22/2024]
Abstract
As one of the main components of solid propellant, ammonium perchlorate (AP) shows slow sluggish decomposition kinetics with unconcentrated heat release. To achieve efficient catalytical decomposition, it is a significant challenge to design reasonable catalyst structure and explore the interaction between catalyst and AP. Herein, a series of porous carbon supported spinel-typed homogeneous heterometallic composites CuxCo3-xO4/C via pyrolysis of MOF-74-Co doped Cu. On basis of precise electronic-structure-tuning through modulating Cu/Co ratio in MOF-74, Cu0.15Co2.85O4/C with 5% Cu-doping featuring oxygen vacancy concentration of 26.25% exhibits the decrease to 261.5 °C with heat release up to 1222.1 J g-1 (456.9 °C and 669.2 J g-1 for pure AP). The detail process of AP accelerated decomposition is approved by TG-DSC-FTIR-MS technique. Density functional theory calculation revealed that in the Cu0.15Co2.85O4/C, the distinctive ability for NH3 catalyzed oxidation assisted with absorption performance of active porous C boosts accelerating AP decomposition. The findings would provide an insight for perceiving and understanding AP catalytic decomposition.
Collapse
Affiliation(s)
- Shilong Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Yifan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Haojie Tan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Lianjie Zhai
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi, 710069, P. R. China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China
| | - Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| |
Collapse
|
8
|
Lei C, Guan W, Zhao Y, Yu G. Chemistries and materials for atmospheric water harvesting. Chem Soc Rev 2024; 53:7328-7362. [PMID: 38896434 DOI: 10.1039/d4cs00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Atmospheric water harvesting (AWH) is recognized as a crucial strategy to address the global challenge of water scarcity by tapping into the vast reserves of atmospheric moisture for potable water supply. Within this domain, sorbents lie in the core of AWH technologies as they possess broad adaptability across a wide spectrum of humidity levels, underpinned by the cyclic sorption and desorption processes of sorbents, necessitating a multi-scale viewpoint regarding the rational material and chemical selection and design. This Invited Review delves into the essential sorption mechanisms observed across various classes of sorbent systems, emphasizing the water-sorbent interactions and the progression of water networks. A special focus is placed on the insights derived from isotherm profiles, which elucidate sorbent structures and sorption dynamics. From these foundational principles, we derive material and chemical design guidelines and identify key tuning factors from a structural-functional perspective across multiple material systems, addressing their fundamental chemistries and unique attributes. The review further navigates through system-level design considerations to optimize water production efficiency. This review aims to equip researchers in the field of AWH with a thorough understanding of the water-sorbent interactions, material design principles, and system-level considerations essential for advancing this technology.
Collapse
Affiliation(s)
- Chuxin Lei
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Weixin Guan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Yaxuan Zhao
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Zheng C, Yang X, Li M, Bai S. Bridging the Adsorption Data and Adsorption Process by Introducing a Polynomial Structure To Accurately Describe IUPAC Isotherms, Stepwise Isotherms, and Stepwise Breakthrough Curves. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4132-4141. [PMID: 38365593 DOI: 10.1021/acs.langmuir.3c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Porous heterogeneous adsorbents, those composed of multiple pore structures and surface chemical adsorption sites, can result in various gas or vapor adsorption isotherms, including five types of IUPAC adsorption isotherms and stepwise adsorption isotherms that have been difficult to model using a single adsorption equilibrium model. The limitation of the above equilibrium model further restricts the calculations of complex stepwise breakthrough curves. To bridge the adsorption data and adsorption process, it is important to first develop a simple model or method to describe these isotherms of various complex adsorption systems. In this work, assuming that the effect of the diffusion rate can be neglected under the static condition and the adsorption process is discontinuous, the number of adsorption isotherm inflection points can be used to represent the changed number of adsorption interactions. With the introduction of the polynomial structure, a series of empirical or semi-empirical polynomial adsorption models were developed. The N-site polynomial Langmuir-Freundlich equation could accurately fit common type I, II, III, IV, and V adsorption isotherms and complex stepwise adsorption isotherms covering various adsorbates, such as volatile organic compounds (VOCs), toxic industrial chemicals (TICs), water vapor, and carbon dioxide, as well as different adsorbents, such as metal/covalent organic frameworks (MOFs/COFs), zeolites, and porous carbons. Similarly, the introduction of a polynomial structure, such as the N-site polynomial Yoon-Nelson equation, was also successful in the description of interesting stepwise breakthrough curves. This work provides a more accurate adsorption equilibrium model to characterize all types of isotherms. As a foundation model, it is expected to be used to simulate the gas-solid adsorption process inside the fixed and fluidized beds packed with porous adsorbents.
Collapse
Affiliation(s)
- Chao Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People's Republic of China
| | - Xuanlin Yang
- Science and Technology on Near-Surface Detection Laboratory, Wuxi, Jiangsu 214000, People's Republic of China
| | - Ming Li
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Shupei Bai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People's Republic of China
| |
Collapse
|
11
|
Attallah AG, Bon V, Maity K, Hirschmann E, Butterling M, Wagner A, Kaskel S. Unravelling the Water Adsorption Mechanism in Hierarchical MOFs: Insights from In Situ Positron Annihilation Lifetime Studies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48264-48276. [PMID: 37796977 PMCID: PMC10591278 DOI: 10.1021/acsami.3c10974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Atmospheric water harvesting with metal-organic frameworks (MOFs) is a new technology providing a clean, long-term water supply in arid areas. In-situ positron annihilation lifetime spectroscopy (PALS) is proposed as a valid methodology for the mechanistic understanding of water sorption in MOFs and the selection of prospective candidates for desired applications. DUT-67-Zr and DUT-67-Hf frameworks are used as model systems for method validation because of their hierarchical pore structure, high adsorption capacity, and chemical stability. Both frameworks are characterized using complementary techniques, such as nitrogen (77 K) and water vapor (298 K) physisorption, SEM, and PXRD. DUT-67-Zr and DUT-67-Hf are investigated by PALS upon exposure to humidity for the first time, demonstrating the stepwise pore filling mechanism by water molecules for both MOFs. In addition to exploring the potential of PALS as a tool for probing MOFs during in situ water loading, this work offers perspectives on the design and use of MOFs for water harvesting.
Collapse
Affiliation(s)
- Ahmed G. Attallah
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiation Physics, Dresden 01328, Germany
- Physics
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Volodymyr Bon
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, Bergstrasse 66, Dresden D-01062, Germany
| | - Kartik Maity
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, Bergstrasse 66, Dresden D-01062, Germany
| | - Eric Hirschmann
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiation Physics, Dresden 01328, Germany
| | - Maik Butterling
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiation Physics, Dresden 01328, Germany
| | - Andreas Wagner
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiation Physics, Dresden 01328, Germany
| | - Stefan Kaskel
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, Bergstrasse 66, Dresden D-01062, Germany
- Fraunhofer
Institute for Material and Beam Technology IWS, Winterbergstraße 28, Dresden D01277, Germany
| |
Collapse
|
12
|
Xu Z, Zhao YY, Chen L, Zhu CY, Li P, Gao W, Li JY, Zhang XM. Thermally activated bipyridyl-based Mn-MOFs with Lewis acid-base bifunctional sites for highly efficient catalytic cycloaddition of CO 2 with epoxides and Knoevenagel condensation reactions. Dalton Trans 2023; 52:3671-3681. [PMID: 36847359 DOI: 10.1039/d3dt00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Metal-organic frameworks (MOFs) have become preferred heterogeneous catalytic materials for many reactions due to their advantages such as porosity and abundant active sites. Here, a 3D Mn-MOF-1 [Mn2(DPP)(H2O)3]·6H2O (DPP = 2,6-di(2,4-dicarboxyphenyl)-4-(pyridine-4-yl)pyridine) was successfully synthesized under solvothermal conditions. This Mn-MOF-1 possesses a 3D structure constructed by the combination of a 1D chain and the DPP4- ligand and features a micropore with a 1D drum-like shaped channel. Interestingly, Mn-MOF-1 can maintain the structure unchanged by the removal of coordinated and lattice water molecules, whose activated state (denoted as Mn-MOF-1a) contains rich Lewis acid sites (tetra- and pentacoordinated Mn2+ ions) and Lewis base sites (Npyridine atoms). Furthermore, Mn-MOF-1a shows excellent stability, which can be used to catalyze CO2 cycloaddition reactions efficiently under eco-friendly, solvent-free conditions. In addition, the synergistic effect of Mn-MOF-1a resulted in its promising potential in Knoevenagel condensation under ambient conditions. More importantly, the heterogeneous catalyst Mn-MOF-1a can be recycled and reused without an obvious decrease of activity for at least 5 reaction cycles. This work not only paves the way for the construction of Lewis acid-base bifunctional MOFs based on pyridyl-based polycarboxylate ligands but also demonstrates that Mn-based MOFs hold great promise as a heterogeneous catalyst toward both CO2 epoxidation and Knoevenagel condensation reactions.
Collapse
Affiliation(s)
- Zhen Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Ya-Yu Zhao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Le Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Cai-Yong Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Peng Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Wei Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Ji-Yang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiu-Mei Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| |
Collapse
|