1
|
Lu Y, You XY, Zhang Q, Lu QT, Hou JL, Cai Q. Enantioselective Total Synthesis of Fortimicin B. Angew Chem Int Ed Engl 2025; 64:e202424235. [PMID: 40079796 DOI: 10.1002/anie.202424235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Fortimicins, featuring a pseudodisaccharide scaffold, are an unusual class of aminoglycosides (AGs) with potent efficacy against several aminoglycoside-resistant bacterial strains. Notably, these molecules also exhibit lower inherent ototoxicity and nephrotoxicity than common aminoglycosides. Consequently, fortimicins are a promising type of protoypical molecules for the development of the next generation of aminoglycoside antibiotics. Here, we report the asymmetric total synthesis of fortimicin B in 12 steps (longest linear sequence, LLS) from readily available starting materials. An enantioselective Cu(II)-catalyzed inverse-electron-demand Diels-Alder (IEDDA) reaction of 2-pyrones and N-substituted 2-oxazolones was developed for the efficient synthesis of the fortamine fragment, which previously required a lengthy multistep synthesis owing to its complex stereochemistry. The 6-epi-purpurosamine B fragment was efficiently synthesized through a Cr(II)/Co(I)-mediated C─C bond coupling between aldehydes and alkyl halides. Within these two fragments, the stereoselective construction of the α-glycosidic bond of fortimicin B was realized via the gold(I)-catalyzed glycosylation. Overall, this study provides an efficient synthetic platform for future investigations into the structure-activity relationships of fortimicins.
Collapse
Affiliation(s)
- Yang Lu
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Xin-Yu You
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Qianwei Zhang
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Qi-Tao Lu
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Quan Cai
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| |
Collapse
|
2
|
Yen KW, Chein CC, Wung SH, Shen LC, Wu YK. Palladium-Catalyzed Oxidative Cyclization of O-Aryl Cyclic Vinylogous Esters: Synthesis of Benzofuran-Fused Cyclohexenones. J Org Chem 2024; 89:18679-18683. [PMID: 39610223 DOI: 10.1021/acs.joc.4c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
This study presents a method for synthesizing functionalized hydrodibenzofuran derivatives. Using palladium catalysis, O-aryl cyclic vinylogous esters undergo dehydrogenative intramolecular arylation at the vinylic carbon. Preliminary kinetic isotope effect studies suggest that the C(aryl)-H bond cleavage may be the rate-determining step.
Collapse
Affiliation(s)
- Ko-Wang Yen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chia-Chen Chein
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Shih-Hsun Wung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Li-Ching Shen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yen-Ku Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
3
|
Xu Z, Peng W, Huang J, Shen J, Guo JJ, Hu A. Photoinduced formal [4 + 2] cycloaddition of two electron-deficient olefins and its application to the synthesis of lucidumone. Nat Commun 2024; 15:9748. [PMID: 39528531 PMCID: PMC11555068 DOI: 10.1038/s41467-024-54117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Electronically mismatched Diels-Alder reaction between two electron-deficient components is synthetically useful and yet underdeveloped under thermal conditions. Herein, a photoinduced formal [4 + 2] cycloaddition of enone with a variety of electron-deficient dienes is described. Key to the success of this stepwise methodology relies on a C - C bond cleavage/rearrangement of the cyclobutane based overbred intermediate via diversified mechanistic pathways. Based on this annulation method, total synthesis of lucidumone is achieved in nine steps.
Collapse
Affiliation(s)
- Zhezhe Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Weibo Peng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jiarui Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jinhui Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jing-Jing Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| | - Anhua Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Zhang JJ, Qin FY, Cheng YX. Insights into Ganoderma fungi meroterpenoids opening a new era of racemic natural products in mushrooms. Med Res Rev 2024; 44:1221-1266. [PMID: 38204140 DOI: 10.1002/med.22006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure-activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Fu-Ying Qin
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Liao XZ, Wang R, Wang X, Li G. Enantioselective total synthesis of (‒)-lucidumone enabled by tandem prins cyclization/cycloetherification sequence. Nat Commun 2024; 15:2647. [PMID: 38531853 DOI: 10.1038/s41467-024-46896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
The Ganoderma meroterpenoids are a growing class of natural products with architectural complexity, and exhibit a wide range of biological activities. Here, we report an enantioselective total synthesis of the Ganoderma meroterpenoid (‒)-lucidumone. The synthetic route features several key transformations, including a) a Cu-catalyzed enantioselective silicon-tethered intramolecular Diels-Alder cycloaddition to construct the highly functionalized bicyclo[2.2.2]octane moiety; b) Brønsted acid promoted tandem O-deprotection/Prins cyclization/Cycloetherification sequence followed by oxidation to install concurrently the tetrahydrofuran and the fused indanone framework; c) Fleming-Tamao oxidation to generate the secondary hydroxyl; d) an iron-catalyzed Wacker-type oxidation of hindered vinyl group to methyl ketone.
Collapse
Affiliation(s)
- Xian-Zhang Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Ran Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Guang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China.
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China.
| |
Collapse
|
6
|
Zhao HY, Liu GL, Xu Q, Pei YR, Jin LY. Chirality-induced supramolecular nanodishes: enantioselectivity and energy transfer. SOFT MATTER 2024; 20:1884-1891. [PMID: 38321960 DOI: 10.1039/d3sm01747h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Self-assembly is one of the most important issues of fabricating materials with precise chiral nanostructures. Herein, we constructed a chiral assembly system from amphiphiles containing hydrophobic/hydrophilic chiral coils bonded to hexabiphenyl, exhibiting controllable enantioselectivity over various aggregation behaviors. The chiral coils aroused various steric hindrances affecting intrinsic stacking tendency and compactness, leading to different aggregating behaviors, as concluded from the self-assembly investigation. The strong π-π stacking interaction between the long hexabiphenyl groups gave rise to a relatively compact arrangement in the aqueous solution, whereas the methyl side groups on the coil segments raised steric hindrance at the rigid-flexible interface, resulting in loose stacking and formation of nanostructures with a larger curvature. Compared with the achiral molecule 1 that formed micron-sized large sheets, molecules 2-4 containing chiral coils aggregated into nanodishes, which looked exactly like mosquito-repellent incense, to overcome surface tension. The helical structures effectively amplified chirality and exhibited strong circular dichroism (CD) signals, which indicate enantioselectivity. In addition, the relatively loose packing behavior permitted their co-assembly with a dye and aided efficient energy transfer, providing a foundation for the chiral application of supramolecules. Thus, by introducing a simple methyl side group in amphiphilic molecules, asymmetric synthesis and energy transfer efficiency can be realized.
Collapse
Affiliation(s)
- Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Gui-Lang Liu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Qing Xu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| |
Collapse
|
7
|
Fay N, Kouklovsky C, de la Torre A. Natural Product Synthesis: The Endless Quest for Unreachable Perfection. ACS ORGANIC & INORGANIC AU 2023; 3:350-363. [PMID: 38075446 PMCID: PMC10704578 DOI: 10.1021/acsorginorgau.3c00040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 06/13/2024]
Abstract
Total synthesis is a field in constant progress. Its practitioners aim to develop ideal synthetic strategies to build complex molecules. As such, they are both a driving force and a showcase of the progress of organic synthesis. In this Perspective, we discuss recent notable total syntheses. The syntheses selected herein are classified according to the key strategic considerations for each approach.
Collapse
Affiliation(s)
- Nicolas Fay
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| | - Aurélien de la Torre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| |
Collapse
|
8
|
Zhang ZM, Zhang J, Cai Q. Enantioselective and collective total synthesis of pentacyclic 19- nor-clerodanes. Chem Sci 2023; 14:12598-12605. [PMID: 38020367 PMCID: PMC10646913 DOI: 10.1039/d3sc04335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
We report herein the collective asymmetric total synthesis of seven pentacyclic 19-nor-clerodane diterpenoids, namely (+)-teucvin (+)-cracroson A, (+)-cracroson E, (+)-montanin A, (+)-teucvisin C, (+)-teucrin A, and (+)-2-hydroxyteuscorolide. An ytterbium-catalyzed asymmetric inverse-electron-demand Diels-Alder reaction of 4-methyl-2-pyrone with a chiral C5-substituted cyclohexa-1,3-dienol silyl ether is the key feature of the synthesis, which provides the common cis-decalin intermediate with five continuous stereocenters in excellent yield and stereoselectivity. From this diversifiable intermediate, the total synthesis of (+)-teucvin and (+)-2-hydroxyteuscorolide was realized in thirteen and eighteen steps, respectively. From (+)-teucvin, five other pentacyclic 19-nor-clerodanes were divergently and concisely generated through late-stage oxidation state adjustments.
Collapse
Affiliation(s)
- Zhi-Mao Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Junliang Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Quan Cai
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University 220 Handan Rd. Shanghai 200433 China
| |
Collapse
|
9
|
Reid M, Teskey CJ. Highlights from the 56th Bürgenstock Conference on Stereochemistry 2023. Chem Sci 2023; 14:9244-9247. [PMID: 37712042 PMCID: PMC10498497 DOI: 10.1039/d3sc90151c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Herein, we share an overview of the scientific highlights from speakers at the latest edition of the longstanding Bürgenstock Conference.
Collapse
Affiliation(s)
- Marc Reid
- WestCHEM Department of Pure & Applied Chemistry, University of Strathclyde Glasgow UK
| | - Christopher J Teskey
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
10
|
Zhao HY, Gou X, Pei YR, Jin LY. Chirality Amplification Over the Morphology Control of the Rod-Coil Molecules with Lateral Methyl Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37294904 DOI: 10.1021/acs.langmuir.3c00864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the context of sustainable development, research regarding chirality has aroused enormous attention. Concurrently, chiral self-assembly is one of the most important subjects in supramolecular research, which can broaden the applications of chiral materials. This study focuses on the morphology control of amphiphilic rod-coil molecules composed of the rigid hexaphenyl unit and flexible oligoethylene and butoxy groups containing lateral methyl groups, carried out using an enantioseparation application. The methyl side chain being located on different blocks influences the driving force through steric hindrance, which determines the direction and degree of tilted packing during the π-π stacking of the self-assembly process. Interestingly, the amphiphilic rod-coil molecules aggregated into long helical nano-fibers, which further hierarchically aggregated into nano-sheets or nano-tubes upon increasing the concentration of the THF/H2O solution. In particular, the hierarchical-chiral assembly effectively amplified the chirality and was validated by the strong Cotton signals; playing a vital role in the enantioselective nucleophilic substitution reaction. These results provide new insights into the applications of chiral self-assemblies and soft chiral materials.
Collapse
Affiliation(s)
- Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| |
Collapse
|