1
|
Huang HY, Ren BH, Xie M, Huang YT, Li K, Cai Z, Lu XB, Zhu JB. Access to Polyhydroxyalkanoates with Diverse Syndiotacticity via Polymerization by Spiro-Salen Complexes and Insights into the Stereocontrol Mechanism. Angew Chem Int Ed Engl 2025; 64:e202419494. [PMID: 39714575 DOI: 10.1002/anie.202419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Polyhydroxyalkanoates (PHAs) have attracted broad interest as promising sustainable materials to address plastic pollution and resource scarcity. However, the chemical synthesis of stereoregular PHAs via ring-opening polymerization (ROP) has long been an elusive endeavor. In this contribution, we exploited a robust spiro-salen yttrium complex (Y3) as the catalyst to successfully prepare syndiotactic PHAs with diverse pendent groups. Simply altering the ratio of enantiomeric catalysts allowed to access of PHAs with diverse syndiotacticity (Pr=0.5-0.99, from sticky oil to tough materials), delivering tunable thermal properties (glass transition temperature, Tg from -52 to 70 °C and melting transition temperature, Tm from 38 to 223 °C). A combined experimental and computational study suggested a polymeric exchange mechanism could boost the polymerization activity and control the syndioselectivity.
Collapse
Affiliation(s)
- Hao-Yi Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Min Xie
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Yu-Ting Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Kun Li
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| |
Collapse
|
2
|
Moccia S, D’ Alterio MC, Romano E, De Rosa C, Talarico G. Stereoselectivity Control Interplay in Racemic Lactide Polymerization by Achiral Al-Salen Complexes. Macromol Rapid Commun 2025; 46:e2400733. [PMID: 39437176 PMCID: PMC11800063 DOI: 10.1002/marc.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The origin of stereocontrol in ring opening polymerization (ROP) of racemic lactide (rac-LA) promoted by achiral aluminium-based catalysts has been explained through DFT calculations combined with a molecular descriptor (%VBur) and the activation strain model (ASM-NEDA) analysis. The proposed chain end control (CEC) model suggests that the ligand framework adopts a chiral configuration mimicking the enantiomorphic site control (ESC) while also incorporating control of the last inserted monomer unit. It is found that the ligand wrapping mode around the aluminium centre is dictated by the monomer configuration (R,R-LA and S,S-LA). A good correlation with experimental data is achieved only when accounting for the ligand dynamic features and its steric influences, as highlighted by %VBur steric maps and ASM-NEDA analysis. Understanding the ESC and CEC interplay is an important target for obtaining stereoselective ROP polymerization for the synthesis of biodegradable materials with tailored properties.
Collapse
Affiliation(s)
- Serena Moccia
- Department of Chemical SciencesUniversità degli Studi di Napoli Federico IIvia CintiaNapoli80126Italy
| | | | - Eugenio Romano
- Scuola Superiore MeridionaleLargo San Marcellino 10Napoli80138Italy
- Scuola Normale SuperiorePiazza dei Cavalieri 7Pisa56126Italy
| | - Claudio De Rosa
- Department of Chemical SciencesUniversità degli Studi di Napoli Federico IIvia CintiaNapoli80126Italy
| | - Giovanni Talarico
- Department of Chemical SciencesUniversità degli Studi di Napoli Federico IIvia CintiaNapoli80126Italy
- Scuola Superiore MeridionaleLargo San Marcellino 10Napoli80138Italy
| |
Collapse
|
3
|
Khazeber R, Pathak S, Sureshan KM. Simultaneous and in situ syntheses of an enantiomeric pair of homochiral polymers as their perfect stereocomplex in a crystal. Nat Commun 2024; 15:6639. [PMID: 39103331 DOI: 10.1038/s41467-024-50948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Circumventing the issues of conventional stereocomplexation of preformed polymers, herein, we synthesize two enantiopure polymers of opposite chirality simultaneously and in situ as their 1:1 stereocomplex via topochemical polymerization. We design and synthesize an inositol-based achiral monomer for topochemical ene-azide cycloaddition (TEAC) polymerization. In the crystal, the monomer exhibits conformational enantiomerism, and its conformational enantiomers are self-sorted in an arrangement for TEAC polymerization to yield two enantiopure polymers of opposite chirality. Upon heating the monomer crystals, each self-sorted set of conformational enantiomers undergoes regio- and stereospecific polymerization in a single-crystal-to-single-crystal fashion, generating two 1, 4-triazolinyl-linked polymers of opposite chirality simultaneously. The new chiral carbons in all the triazoline rings of a particular polymer chain have the same absolute configuration. These homochiral polymer strands align parallelly, forming a layer, and such enantiopure layers of opposite chirality stack alternately, forming a perfect 1:1 stereocomplex, which we confirmed using single-crystal XRD analysis.
Collapse
Affiliation(s)
- Ravichandran Khazeber
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Sourav Pathak
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
4
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
5
|
Zhou Z, LaPointe AM, Coates GW. Atactic, Isotactic, and Syndiotactic Methylated Polyhydroxybutyrates: An Unexpected Series of Isomorphic Polymers. J Am Chem Soc 2023; 145:25983-25988. [PMID: 37976254 DOI: 10.1021/jacs.3c10944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polyhydroxyalkanoates (PHAs), such as poly[(R)-3-hydroxybutyrates] [(R)-P3HB], are produced by bacteria and are promising alternatives to nondegradable polyolefin plastics, but their semicrystallinity and high melting points are only maintained at high tacticity, which are commonly seen in other semicrystalline polymers like isotactic polypropylene (iPP). We herein report a class of synthetic PHAs, cis-poly(3-hydroxy-2-methylbutyrate)s (cis-PHMBs), that exhibit tacticity-independent semicrystallinity. The syndiotactic, isotactic, and even atactic PHMBs all share high melting points (Tm > 170 °C) and nearly identical crystal structures. The isomorphism of these polymers across three different tacticities has allowed access to iPP-like, high-performance PHMB without the requirement of high tacticity.
Collapse
Affiliation(s)
- Zhiyao Zhou
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Anne M LaPointe
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
6
|
Zhang Z, Quinn EC, Olmedo-Martínez JL, Caputo MR, Franklin KA, Müller AJ, Chen EYX. Toughening Brittle Bio-P3HB with Synthetic P3HB of Engineered Stereomicrostructures. Angew Chem Int Ed Engl 2023; 62:e202311264. [PMID: 37878997 DOI: 10.1002/anie.202311264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Poly(3-hydroxybutyrate) (P3HB), a biologically produced, biodegradable natural polyester, exhibits excellent thermal and barrier properties but suffers from mechanical brittleness, largely limiting its applications. Here we report a mono-material product design strategy to toughen stereoperfect, brittle bio or synthetic P3HB by blending it with stereomicrostructurally engineered P3HB. Through tacticity ([mm] from 0 to 100 %) and molecular weight (Mn to 788 kDa) tuning, high-performance synthetic P3HB materials with tensile strength to ≈30 MPa, fracture strain to ≈800 %, and toughness to 126 MJ m-3 (>110× tougher than bio-P3HB) have been produced. Physical blending of the brittle P3HB with such P3HB in 10 to 90 wt % dramatically enhances its ductility from ≈5 % to 95-450 % and optical clarity from 19 % to 85 % visible light transmittance while maintaining desirably high elastic modulus (>1 GPa), tensile strength (>35 MPa), and melting temperature (160-170 °C). This P3HB-toughening-P3HB methodology departs from the traditional approach of incorporating chemically distinct components to toughen P3HB, which hinders chemical or mechanical recycling, highlighting the potential of the mono-material product design solely based on biodegradable P3HB to deliver P3HB materials with diverse performance properties.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Jorge L Olmedo-Martínez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
| | - Maria Rosaria Caputo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
| | - Kevin A Franklin
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| |
Collapse
|
7
|
Xie X, Huo Z, Jang E, Tong R. Recent advances in enantioselective ring-opening polymerization and copolymerization. Commun Chem 2023; 6:202. [PMID: 37775528 PMCID: PMC10541874 DOI: 10.1038/s42004-023-01007-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Precisely controlling macromolecular stereochemistry and sequences is a powerful strategy for manipulating polymer properties. Controlled synthetic routes to prepare degradable polyester, polycarbonate, and polyether are of recent interest due to the need for sustainable materials as alternatives to petrochemical-based polyolefins. Enantioselective ring-opening polymerization and ring-opening copolymerization of racemic monomers offer access to stereoregular polymers, specifically enantiopure polymers that form stereocomplexes with improved physicochemical and mechanical properties. Here, we highlight the state-of-the-art of this polymerization chemistry that can produce microstructure-defined polymers. In particular, the structures and performances of various homogeneous enantioselective catalysts are presented. Trends and future challenges of such chemistry are discussed.
Collapse
Affiliation(s)
- Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Eungyo Jang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA.
| |
Collapse
|
8
|
Westlie AH, Hesse SA, Tang X, Quinn EC, Parker CR, Takacs CJ, Tassone CJ, Chen EYX. All-Polyhydroxyalkanoate Triblock Copolymers via a Stereoselective-Chemocatalytic Route. ACS Macro Lett 2023; 12:619-625. [PMID: 37094112 DOI: 10.1021/acsmacrolett.3c00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Biodegradable polyhydroxyalkanoate (PHA) homopolymers and statistical copolymers are ubiquitous in microbially produced PHAs, but the step-growth polycondensation mechanism the biosynthesis operates on presents a challenge to access well-defined block copolymers (BCPs), especially higher-order tri-BCP PHAs. Here we report a stereoselective-chemocatalytic route to produce discrete hard-soft-hard ABA all-PHA tri-BCPs based on the living chain-growth ring-opening polymerization of racemic (rac) 8-membered diolides (rac-8DLR; R denotes the two substituents on the ring). Depending on the composition of the soft B block, originated from rac-8DLR (R = Et, nBu), and its ratio to the semicrystalline, high-melting hard A block, derived from rac-8DLMe, the resulting all-PHA tri-BCPs with high molar mass (Mn up to 238 kg mol-1) and low dispersity (Đ = 1.07) exhibit tunable mechanical properties characteristic of a strong and tough thermoplastic, elastomer, or a semicrystalline thermoplastic elastomer.
Collapse
Affiliation(s)
- Andrea H Westlie
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Sarah A Hesse
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xiaoyan Tang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Celine R Parker
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
9
|
Zhou L, Zhang Z, Shi C, Scoti M, Barange DK, Gowda RR, Chen EYX. Chemically circular, mechanically tough, and melt-processable polyhydroxyalkanoates. Science 2023; 380:64-69. [PMID: 37023198 DOI: 10.1126/science.adg4520] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Polyhydroxyalkanoates (PHAs) have attracted increasing interest as sustainable plastics because of their biorenewability and biodegradability in the ambient environment. However, current semicrystalline PHAs face three long-standing challenges to broad commercial implementation and application: lack of melt processability, mechanical brittleness, and unrealized recyclability, the last of which is essential for achieving a circular plastics economy. Here we report a synthetic PHA platform that addresses the origin of thermal instability by eliminating α-hydrogens in the PHA repeat units and thus precluding facile cis-elimination during thermal degradation. This simple α,α-disubstitution in PHAs enhances the thermal stability so substantially that the PHAs become melt-processable. Synergistically, this structural modification also endows the PHAs with the mechanical toughness, intrinsic crystallinity, and closed-loop chemical recyclability.
Collapse
Affiliation(s)
- Li Zhou
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Miriam Scoti
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Deepak K Barange
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Ravikumar R Gowda
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| |
Collapse
|
10
|
Quinn EC, Westlie AH, Sangroniz A, Caputo MR, Xu S, Zhang Z, Urgun-Demirtas M, Müller AJ, Chen EYX. Installing Controlled Stereo-Defects Yields Semicrystalline and Biodegradable Poly(3-Hydroxybutyrate) with High Toughness and Optical Clarity. J Am Chem Soc 2023; 145:5795-5802. [PMID: 36867587 DOI: 10.1021/jacs.2c12897] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Stereo-defects present in stereo-regular polymers often diminish thermal and mechanical properties, and hence suppressing or eliminating them is a major aspirational goal for achieving polymers with optimal or enhanced properties. Here, we accomplish the opposite by introducing controlled stereo-defects to semicrystalline biodegradable poly(3-hydroxybutyrate) (P3HB), which offers an attractive biodegradable alternative to semicrystalline isotactic polypropylene but is brittle and opaque. We enhance the specific properties and mechanical performance of P3HB by drastically toughening it and also rendering it with the desired optical clarity while maintaining its biodegradability and crystallinity. This toughening strategy of stereo-microstructural engineering without changing the chemical compositions also departs from the conventional approach of toughening P3HB through copolymerization that increases chemical complexity, suppresses crystallization in the resulting copolymers, and is thus undesirable in the context of polymer recycling and performance. More specifically, syndio-rich P3HB (sr-P3HB), readily synthesized from the eight-membered meso-dimethyl diolide, has a unique set of stereo-microstructures comprising enriched syndiotactic [rr] and no isotactic [mm] triads but abundant stereo-defects randomly distributed along the chain. This sr-P3HB material is characterized by high toughness (UT = 96 MJ/m3) as a result of its high elongation at break (>400%) and tensile strength (34 MPa), crystallinity (Tm = 114 °C), optical clarity (due to its submicron spherulites), and good barrier properties, while it still biodegrades in freshwater and soil.
Collapse
Affiliation(s)
- Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Andrea H Westlie
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ainara Sangroniz
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián 20018, Spain
| | - Maria Rosaria Caputo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián 20018, Spain
| | - Shu Xu
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | | | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián 20018, Spain.,IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|