1
|
Dong J, Yu D, Li T, Xue D. Recent advances in the synthesis of bicyclo[4.1.1]octanes. Org Biomol Chem 2025. [PMID: 40364773 DOI: 10.1039/d5ob00533g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The exploration of bicyclo[n.1.1]alkanes, known for their intricate chemical diversity and potential as benzene bioisosteres, has garnered significant attention over the past two decades. In particular, the past year has seen the emergence of bicyclo[4.1.1]octanes and their structural analogues as promising bioisosteres for meta-substituted arenes and cis-1,3-disubstituted cyclohexanes. To meet the growing demand for bicyclo[4.1.1]octanes, chemists have recently developed innovative (4 + 3) cycloaddition strategies, leveraging bicyclobutanes (BCBs) and 1,4-dipoles for their synthesis. This review provides a comprehensive evaluation of recent advancements in the synthesis and functionalization of these compounds, emphasizing their scope and underlying mechanisms. Additionally, we highlight the challenges and future prospects of identifying novel reaction pathways to access new functionalized bicyclo[4.1.1]octanes.
Collapse
Affiliation(s)
- Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| | - Dejiang Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| | - Ting Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
2
|
Maity A, Balanna K, Daniliuc CG, Studer A. Diastereoselective 1,3-nitrooxygenation of bicyclo[1.1.0]butanes. Chem Sci 2025; 16:7264-7269. [PMID: 40171027 PMCID: PMC11956531 DOI: 10.1039/d4sc08753d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Cyclobutanes are strained carbocycles found in many drugs and natural products. Herein, we report a diastereoselective 1,3-nitrooxygenation of bicyclo[1.1.0]butanes with tert-butylnitrite and TEMPO to access 1,1,3-trisubstituted cyclobutanes. Various bicyclo[1.1.0]butanes effectively participated in the radical reaction yielding the substituted cyclobutane scaffolds with excellent yields and diastereoselectivity. The reaction is catalyst-free, easy to perform, and scalable and can be conducted in open air. Products obtained serve as substrates for the synthesis of 1,1,3,3-tetrasubstituted cyclobutanes with good yields and diastereoselectivity.
Collapse
Affiliation(s)
- Anirban Maity
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Kuruva Balanna
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
3
|
Zhang Z, Wu H, Xu W, Bai D. Regio- and Diastereoselective Cascade Reactions of Bicyclo[1.1.0]butanes: Access to gem-Difluorinated Carbocyclic Rings. Org Lett 2025; 27:4378-4383. [PMID: 40243225 DOI: 10.1021/acs.orglett.5c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
gem-Difluorinated carbocyclic rings are attractive motifs in drug development. Herein, we report the transition-metal free cascade reaction of bicyclo[1.1.0]butanes (BCBs) with gem-difluorocyclopropenes for the synthesis of gem-difluorinated carbocyclic rings with excellent regio- and diastereoselectivity. This method was successfully applied to provide a broad range of gem-difluorinated cyclopentenes and cyclopropanes, which could undergo a variety of difluoromethylene (CF2) retaining transformations.
Collapse
Affiliation(s)
- Zhiyi Zhang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, China
| | - Hao Wu
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, China
| | - Wenjie Xu
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, China
| | - Dachang Bai
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Yadav N, Banerjee P. (3+2) Annulation of Donor-Acceptor Cyclopropanes with Difluoroenoxysilanes: Syntheses of gem-Difluorocyclopentenes via α,α-Difluoroketone Scaffolds. J Org Chem 2025; 90:4620-4632. [PMID: 40145124 DOI: 10.1021/acs.joc.4c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Herein, we present an acid- and base-mediated approach for ring opening of donor-acceptor cyclopropanes (DACs) followed by (3+2) annulation, yielding biologically relevant gem-difluorinated cyclopentenes via α,α-difluoroketone scaffolds. Fluorinated rings are essential building blocks in drug discovery and materials research. This methodology has a broad substrate scope, is scalable, and provides a practical synthetic route to obtain value-added fluorinated compounds.
Collapse
Affiliation(s)
- Neeraj Yadav
- Lab No. 406, Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Prabal Banerjee
- Lab No. 406, Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
5
|
Juliá F. Catalysis in the Excited State: Bringing Innate Transition Metal Photochemistry into Play. ACS Catal 2025; 15:4665-4680. [PMID: 40144674 PMCID: PMC11934144 DOI: 10.1021/acscatal.4c07962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 03/28/2025]
Abstract
Transition metal catalysis is an indispensable tool for organic synthesis that has been harnessed, modulated, and perfected for many decades by careful selection of metal centers and ligands, giving rise to synthetic methods with unparalleled efficiency and chemoselectivity. Recent developments have demonstrated how light irradiation can also be recruited as a powerful tool to dramatically alter the outcome of catalytic reactions, providing access to innovative pathways with remarkable synthetic potential. In this context, the adoption of photochemical conditions as a mainstream strategy to drive organic reactions has unveiled exciting opportunities to exploit the rich excited-state framework of transition metals for catalytic applications. This Perspective examines advances in the application of transition metal complexes as standalone photocatalysts, exploiting the innate reactivity of their excited states beyond their common use as photoredox catalysts. An account of relevant examples is dissected to provide a discussion on the electronic reorganization, the orbitals involved, and the associated reactivity of different types of excited states. This analysis aims to provide practitioners with fundamental principles and guiding strategies to understand, design, and apply light-activation strategies to homogeneous transition metal catalysis for organic synthesis.
Collapse
Affiliation(s)
- Fabio Juliá
- Facultad de Química,
Centro de Investigación Multidisciplinar Pleiades-Vitalis, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
6
|
Cheung KPS, Gevorgyan V. Illuminating Palladium Catalysis. Acc Chem Res 2025; 58:861-876. [PMID: 40009731 DOI: 10.1021/acs.accounts.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
ConspectusThe past decade has witnessed significant advancements of visible-light-induced photocatalysis, establishing it as a powerful and versatile tool in organic synthesis. The major focus of this field has centered on the development of methodologies that either rely solely on photocatalysts or combine photocatalysis with other catalytic methods, such as transition metal catalysis, to address a broader and more diverse array of transformations. Within this rapidly evolving area, a subfield that we refer to as transition metal photocatalysis has garnered significant attention due to its growing impact and mechanistic uniqueness. A distinguishing feature of this subfield is the dual functionality of a single transition metal complex, which not only acts as a photocatalyst to initiate photochemical processes but also functions as a traditional catalyst, facilitating key bond-breaking and bond-forming events. As such, an exogenous photocatalyst is not required in transition metal photocatalysis. However, the implications of harnessing both the excited- and ground-state reactivities of the transition metal complex can extend beyond this simplification. One of the most compelling aspects of this area is that photoexcited transition metal complexes can exhibit unique reactivities inaccessible through conventional thermal or dual photocatalytic approaches. These distinct reactivities can be leveraged to accomplish novel transformations either by engaging an entirely different substrate pool or by unlocking new reactivities of known substrates.In 2016, our group pioneered the use of phosphine-ligated palladium catalysts that can be photoexcited upon visible-light irradiation to engage diverse substrates in radical reactions. In our initial discovery, we showed that photoexcitation can redirect the well-established oxidative addition of a Pd(0) complex into aryl iodides toward an unprecedented radical process, generating hybrid aryl Pd(I) radical species. We subsequently extended this novel strategy to the formation of alkyl radicals from alkyl halides. These reactive radical intermediates have been harnessed in a wide variety of transformations, including desaturation, alkyl Heck reactions, and alkene difunctionalization cascades, among others.Seeking to further expand this new avenue, we achieved the first example of asymmetric palladium photocatalysis in the context of allylic C-H amination, where the palladium catalyst now plays triple duty by additionally controlling the stereochemical outcome of the reaction. In parallel to reaction discovery, we have also established that diazo compounds, strained molecules, and electron-deficient alkenes can serve as alkyl radical precursors beyond organic halides and redox-active esters. Notably, the engagement of electron-deficient alkenes has been made possible by the photoinduced hydricity enhancement of Pd-H species, representing a new mode of photoexcited reactivity.This Account presents our discovery and development of visible-light-induced palladium catalysis, organized by the type of transformations explored. Given the rapid progress in the field, we anticipate that this Account will provide readers with guiding principles and inspiration for designing and developing more efficient and novel transformations.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
7
|
Zhang X, Tian T, Liao P, Liu Z, Murali K, Bi X. Copper-Catalyzed Cross-Coupling of Bicyclobutanes with Triftosylhydrazone Leading to Skipped Dienes. Org Lett 2025; 27:2300-2304. [PMID: 40040367 DOI: 10.1021/acs.orglett.4c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Here, we report a protocol for the synthesis of skipped dienes through the cross-coupling of bicyclo[1.1.0]butanes with trifluoromethyl triftosylhydrazones. The reaction is run using TpBr3Cu(NCMe) as a catalyst to give access to a library of trifluoromethylated skipped dienes (32 examples, ≤98% yield) with excellent E/Z selectivity under mild and operationally safe conditions. The presented methods proved to be compatible with various functionalized bicyclo[1.1.0]butanes and triftosylhydrazones.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tian Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Peiqiu Liao
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Karunanidhi Murali
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Yu T, Zhao X, Nie Z, Qin L, Ding Z, Xu L, Li P. Diverse Synthesis of Arene-Fused [n.1.1]-Bridged Molecules via Catalytic Cycloaddition and Rearrangement Reactions. Angew Chem Int Ed Engl 2025; 64:e202420831. [PMID: 39714393 DOI: 10.1002/anie.202420831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Although great advancement has been made in synthesis of 3D bridged bicyclic[n.1.1]-bioisosteres, facile construction of 2D/3D merged molecules incorporating bridged rings, as novel chemical space in drug discovery, remains a significant challenge. Herein a collective, selective, and diversity-oriented approach for up to 6 types of 2D/3D polycyclic scaffolds featuring bicyclo[n.1.1] substructure is reported. A boronyl radical-catalyzed [2σ+2π] cycloaddition between bicyclo[1.1.0]butanes and ortho-quinone methides afforded spirocyclic compounds containing a bicyclo[2.1.1]hexanes unit, which were used as intermediates for synthesis of three types of 2D/3D scaffolds via judiciously controlled Lewis acid-catalyzed rearrangements. The reaction and rearrangement of para-quinone methides worked analogously and provided another two polycyclic scaffolds.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xue Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zaicheng Nie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Lulu Qin
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Chen PF, Dong MY, Han CY, Li DS, Hong Y, Xue F, Liu F, Deng HP. Photoinduced Cobaloxime-Catalyzed Regio- and Diastereoselective Hydrogen-Evolution C(sp 3)-H Phosphorylation of Bicyclo[1.1.0]butanes. Org Lett 2025; 27:898-904. [PMID: 39812090 DOI: 10.1021/acs.orglett.4c04702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Radical-initiated functionalization of bicyclo[1.1.0]butanes (BCBs) is a straightforward approach to accessing diverse cyclobutane derivatives. However, selective C(sp3)-H functionalization at the C2 position of BCBs remains scarce. Herein, a mild protocol for the hydrogen-evolution of C2 C(sp3)-H phosphorylation with BCBs enabled by photoinduced cobaloxime catalysis was realized in a regio- and diastereoselective manner. This oxidant- and additional photocatalyst-free method enabled C(sp3)-H phosphorylation with a wide range of BCBs and diarylphosphine oxides. The mechanism was studied via control experiments and DFT calculation. Moreover, the efficiency of this approach was highlighted in the synthesis of high-value, structurally complex molecules.
Collapse
Affiliation(s)
- Peng-Fei Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Meng-Yuan Dong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chun-Yu Han
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yang Hong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fang Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
10
|
Zheng L, Yang YM, Liu ZP, Wang W, Liang WJ, Jiang HL, Yang L, Lin C, Su W, Xiao JA. Palladium-Catalyzed Strain-Enabled [2π + 2σ] Cycloadditions of Vinyl Bicyclo[1.1.0]butanes with Methyleneindolinones. Org Lett 2025; 27:229-234. [PMID: 39723988 DOI: 10.1021/acs.orglett.4c04224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A palladium-catalyzed [2π + 2σ] cycloaddition of vinyl bicyclo[1.1.0]butanes with methyleneindolinones has been developed. The reaction enables the construction of spirobicyclo[2.1.1]hexanes bearing an all-carbon quaternary center in moderate to good yields with excellent diastereoselectivities. This method features a broad substrate scope with good functional group compatibility. The practical utility of this protocol was further demonstrated by gram-scale synthesis and postsynthetic transformations of desired product.
Collapse
Affiliation(s)
- Lan Zheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Yu-Min Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Zhi-Ping Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Wei Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Wen-Jie Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Hai-Lian Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Liu Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Chenxiang Lin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| |
Collapse
|
11
|
Li B, Feng QS, Yuan JL, Xia Y. Access to Vinyl Gem-Difluorinated Cyclopropanes Via Photopromoted Palladium-Catalyzed Heck Reaction. Chem Asian J 2025; 20:e202400775. [PMID: 39419760 DOI: 10.1002/asia.202400775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
A photopromoted Pd-catalyzed Heck reaction of gem-difluorocyclopropyl bromides (DFCBs) with styrenes to deliver vinyl gem-difluorinated cyclopropanes (VDFCs) under mild conditions has been developed. The reaction demonstrates good functional group compatibility while providing high E/Z ratio of the products. Furthermore, the desired VDFCs can be easily transformed into fluorinated cyclic/acyclic architectures, which may broaden its applications in organic synthesis.
Collapse
Affiliation(s)
- Bin Li
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041
| | - Qiu-Shi Feng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041
| | - Jia-Li Yuan
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041
| |
Collapse
|
12
|
Sun YW, Zhao JH, Yan XY, Ji CL, Feng H, Gao DW. Asymmetric synthesis of atropisomers featuring cyclobutane boronic esters facilitated by ring-strained B-ate complexes. Nat Commun 2024; 15:10810. [PMID: 39738011 DOI: 10.1038/s41467-024-55161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
The strain-release-driven reactions of bicyclo[1.1.0]butanes (BCBs) have received significant attention from chemists. Notably, 1,2-migratory reactions enabled by BCB-derived B-ate complexes effectively complement the reactions initiated by common BCBs. The desired products are particularly valuable for late-stage transformations due to the presence of the C-B bond. However, asymmetric reactions mediated by BCB-derived boronate complexes have progressed slowly. In this study, we develop an asymmetric synthesis of atropisomers featuring cis-cyclobutane boronic esters facilitated by 1,2-carbon or boron migration of ring-strained B-ate complexes, achieving high enantioselectivity. The reaction is compatible with various aryl, alkenyl, alkyl boronic esters and B2pin2, and shows good compatibility with natural product derivatives. Mechanistic studies are conducted to understand stereoselective control in the dynamic kinetic asymmetric transformations (DYKATs). The target products can undergo a series of transformations, further demonstrating the practicality of this methodology.
Collapse
Affiliation(s)
- Yu-Wen Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jia-Hui Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xin-Yu Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chong-Lei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
13
|
Zhou X, Hu Y, Huang Y, Xiong Y. Recent advances in photochemical strain-release reactions of bicyclo[1.1.0]butanes. Chem Commun (Camb) 2024; 61:23-32. [PMID: 39601173 DOI: 10.1039/d4cc05108d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Bicyclo[1.1.0]butanes (BCBs) are attractive compounds for their beautiful "butterfly" conformations, distinctive properties, and novel reactivities. As soon as the first example had been synthesized, a wide range of strain-release reactions were explored for the preparation of cyclobutanes and bicyclic systems in the ground state or excited state. In particular, with the demand for the construction of rigid three-dimensional aliphatic skeletons to "escape from flatland" in drug discovery programs, numerous efforts have been devoted in this area to expanding the boundaries of their reactivities and broadening the chemical space of their attractive bioisosteric products. In recent years, with the great resurgence and dramatic evolution of photochemistry, photochemical strain-release reactions generally relying on single electron transfer (SET) or energy transfer (EnT) strategies can provide much more opportunities and capability for innovative transformations of BCBs. In this review, we summarize and highlight the recent advances (year > 2016) of this topic and hope that it will inspire much more wonderful chemistry of BCBs.
Collapse
Affiliation(s)
- Xiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Ye Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yang Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
14
|
Gao XY, Tang L, Zhang X, Feng JJ. Palladium-catalyzed decarboxylative (4 + 3) cycloadditions of bicyclobutanes with 2-alkylidenetrimethylene carbonates for the synthesis of 2-oxabicyclo[4.1.1]octanes. Chem Sci 2024:d4sc02998d. [PMID: 39139738 PMCID: PMC11317905 DOI: 10.1039/d4sc02998d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
While cycloaddition reactions of bicyclobutanes (BCBs) have emerged as a potent method for synthesizing (hetero-)bicyclo[n.1.1]alkanes (usually n ≤ 3), their utilization in the synthesis of bicyclo[4.1.1]octane derivatives (BCOs) is still underdeveloped. Here, a palladium-catalyzed formal (4 + 3) reaction of BCBs with 1,4-O/C dipole precursors for the synthesis of oxa-BCOs is described. Unlike previous catalytic polar (3 + X) cycloadditions of BCBs, which are typically achieved through the activation of BCB substrates, the current reaction represents a novel strategy for realizing the cycloaddition of BCBs through the activation of the "X" cycloaddition partner. Moreover, the obtained functionalized oxa-BCOs products can be readily modified through various synthetic transformations.
Collapse
Affiliation(s)
- Xin-Yu Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
15
|
Xia PF, Zhou J, Yuan J, Zeng R, Liu Y, Tang KW, Fan JH. Oxidative Difunctionalization of N-Aryl Bicyclobutyl Amides with Aldehydes: Divergent Synthesis of Acylated and Alkylated 3-Spirocyclobutyl Oxindoles. Org Lett 2024; 26:6486-6490. [PMID: 39042855 DOI: 10.1021/acs.orglett.4c02325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
An efficient and operationally simple oxidative radical difunctionalization of N-aryl bicyclobutyl (BCB) amides with aldehydes is described. It was found that acylated 3-spirocyclobutyl oxindoles were generated from the coupling of BCB-amides and aromatic aldehydes, while reactions gave exclusively decarbonylative alkylarylation products using alkyl aldehydes as radical precursors.
Collapse
Affiliation(s)
- Peng-Fei Xia
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jiao Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jing Yuan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Rui Zeng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
16
|
Zhou JL, Xiao Y, He L, Gao XY, Yang XC, Wu WB, Wang G, Zhang J, Feng JJ. Palladium-Catalyzed Ligand-Controlled Switchable Hetero-(5 + 3)/Enantioselective [2σ+2σ] Cycloadditions of Bicyclobutanes with Vinyl Oxiranes. J Am Chem Soc 2024; 146:19621-19628. [PMID: 38739092 DOI: 10.1021/jacs.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
For nearly 60 years, significant research efforts have been focused on developing strategies for the cycloaddition of bicyclobutanes (BCBs). However, higher-order cycloaddition and catalytic asymmetric cycloaddition of BCBs have been long-standing formidable challenges. Here, we report Pd-catalyzed ligand-controlled, tunable cycloadditions for the divergent synthesis of bridged bicyclic frameworks. The dppb ligand facilitates the formal (5+3) cycloaddition of BCBs and vinyl oxiranes, yielding valuable eight-membered ethers with bridged bicyclic scaffolds in 100% regioselectivity. The Cy-DPEphos ligand promotes selective hetero-[2σ+2σ] cycloadditions to access pharmacologically important 2-oxabicyclo[3.1.1]heptane (O-BCHeps). Furthermore, the corresponding catalytic asymmetric synthesis of O-BCHeps with 94-99% ee has been achieved using chiral (S)-DTBM-Segphos, representing the first catalytic asymmetric cross-dimerization of two strained rings. The obtained O-BCHeps are promising bioisosteres for ortho-substituted benzenes.
Collapse
Affiliation(s)
- Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Linke He
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin-Yu Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, P.R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
17
|
Du YJ, Sheng XX, Tang LN, Chen JM, Liu GY, Hu H, Yang S, Zhu L, Chen M. Accessing Benzoazepine Derivatives via Photoinduced Radical Relay Formal [5 + 2] Reaction of Amide/Alkyne Enabled by Palladium Catalysis. Org Lett 2024; 26:2662-2667. [PMID: 38530133 DOI: 10.1021/acs.orglett.4c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A novel class of alkyne-tethered amides facilitates an unprecedented photoinduced palladium-catalyzed radical relay formal [5 + 2] reaction. This innovative strategy allows for the rapid construction of diverse fused benzoazepine structures, yielding structurally novel and compelling compounds. With a broad substrate scope and excellent functional group tolerance, the methodology synthesizes biologically active compounds. Notably, the resulting tricyclic benzo[b]azepines offer diversification opportunities through simple transformations. DFT calculations elucidate a seven-membered ring closure mechanism involving the alkenyl radical and Pd(I) rebound alongside a concerted metalation-deprotonation (CMD) process.
Collapse
Affiliation(s)
- Yu-Jia Du
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Jia-Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Guo-Ying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Hao Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Lei Zhu
- College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, Chongqing 400038, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| |
Collapse
|
18
|
Zeng Y, Jiang ZT, Xia Y. Selectivity in Rh-catalysis with gem-difluorinated cyclopropanes. Chem Commun (Camb) 2024; 60:3764-3773. [PMID: 38501197 DOI: 10.1039/d4cc00793j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Small-ring chemistry is a fascinating field in organic chemistry. gem-Difluorinated cyclopropanes, a unique class of cyclopropanes, have garnered significant interest due to their intrinsic high reactivity. In this context, gem-difluorinated cyclopropanes have been extensively investigated as fluoroallylic synthons in Pd-catalyzed ring-opening/cross-coupling reactions for the synthesis of monofluoroalkenes with linear or branched selectivity. In contrast, Rh-catalysis has revealed diverse selectivity in the reaction of gem-difluorinated cyclopropanes, such as regioselectivity, enantioselectivity, and chemoselectivity. This feature article aims to summarize our efforts towards developing Rh-catalyzed reactions of gem-difluorinated cyclopropanes, briefly discussing the design, selectivity, reaction mechanisms and future research prospects.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Zhang J, Su JY, Zheng H, Li H, Deng WP. Eu(OTf) 3 -Catalyzed Formal Dipolar [4π+2σ] Cycloaddition of Bicyclo-[1.1.0]butanes with Nitrones: Access to Polysubstituted 2-Oxa-3-azabicyclo[3.1.1]heptanes. Angew Chem Int Ed Engl 2024; 63:e202318476. [PMID: 38288790 DOI: 10.1002/anie.202318476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 02/21/2024]
Abstract
Herein, we have synthesized multifunctionalized 2-oxa-3-azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta-substituted arenes, through Eu(OTf)3 -catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial instance of fabricating bicyclo[3.1.1]heptanes adorned with multiple heteroatoms. The protocol exhibits both mild reaction conditions and a good tolerance for various functional groups. Computational density functional theory calculations support that the reaction mechanism likely involves a nucleophilic addition of nitrones to bicyclo[1.1.0]butanes, succeeded by an intramolecular cyclization. The synthetic utility of this novel protocol has been demonstrated in the concise synthesis of the analogue of Rupatadine.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jia-Yi Su
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
20
|
Fan JH, Yuan J, Xia PF, Zhou J, Zhong LJ, Huang PF, Liu Y, Tang KW, Li JH. Photoredox-Catalyzed Alkylarylation of N-Aryl Bicyclobutyl Amides with α-Carbonyl Alkyl Bromides: Access to 3-Spirocyclobutyl Oxindoles. Org Lett 2024; 26:2073-2078. [PMID: 38446422 DOI: 10.1021/acs.orglett.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A visible-light-induced radical alkylarylation of N-aryl bicyclobutyl amides with α-carbonyl alkyl bromides for the synthesis of functionalized 3-spirocyclobutyl oxindoles is described in which β-selective radical addition of the alkyl radical to N-aryl bicyclobutyl amides forms a key radical intermediate followed by interception with intrinsic arene functional group. This approach can be applicable to a wide range of α-carbonyl alkyl bromides, including primary, secondary, and tertiary α-bromoalkyl esters, ketones, nitriles, and nitro compounds.
Collapse
Affiliation(s)
- Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jing Yuan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Peng-Fei Xia
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jiao Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
21
|
Jiang ZT, Chen Z, Xia Y. Modular Synthesis of Fully-Substituted and Configuration-Defined Alkyl Vinyl Ethers Enabled by Dual-Functional Copper Catalysis. Angew Chem Int Ed Engl 2024; 63:e202319647. [PMID: 38198183 DOI: 10.1002/anie.202319647] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
Here we present a modular, chemo-, regio-, and stereoselective synthesis of fully-substituted and configuration-defined alkyl vinyl ethers (AVEs) using simple chemical feedstocks. The distinctive approach involves the chemo- and regioselective functionalization of the CF2 unit in gem-difluorinated cyclopropanes with O-H and C-H nucleophiles in a specific order. The resulting highly functionalized cyclopropanyl ethers then undergo a stereoselective ring-opening process to produce fully-substituted and configuration-defined AVEs. These AVEs are rarely accessible through conventional methods and are easily transformable. Mechanistic experiments indicate that the success of this method relies on the use of dual-functional copper catalysis, which is involved in both the functionalization of the CF2 unit and the subsequent ring-opening process.
Collapse
Affiliation(s)
- Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Zhengzhao Chen
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| |
Collapse
|
22
|
Das K, Pedada A, Singha T, Hari DP. Strain-enabled radical spirocyclization cascades: rapid access to spirocyclobutyl lactones and - lactams. Chem Sci 2024; 15:3182-3191. [PMID: 38425517 PMCID: PMC10901517 DOI: 10.1039/d3sc05700c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024] Open
Abstract
Spirocyclobutane derivatives have gained significant attention in drug discovery programs due to their broad spectrum of biological activities and clinical applications. Ring-strain in organic molecules is a powerful tool to promote reactivity by releasing strain energy, allowing the construction of complex molecules selectively and efficiently. Herein, we report the first strain-enabled radical spirocyclization cascades for the synthesis of functionalized spirocyclobutyl lactones and - lactams, which are finding increasing applications in medicinal chemistry. The reaction of interelement compounds with bicyclobutane (BCB) allyl esters and - amides proceeds with high chemoselectivity under simple, catalyst-free conditions using blue light irradiation. The reaction has been successfully extended to synthesize bis-spirocycles. To introduce a more diverse set of functional groups, we have developed a dual photoredox/nickel catalytic system capable of mediating the carbosulfonylation of BCB allyl amides. The reaction shows broad applicability across various (hetero)aryl halides, aryl sulfinates, and BCB allyl amides, operates under mild conditions and demonstrates excellent functional group compatibility. The functional groups introduced during the cascade reactions served as versatile handles for further synthetic elaboration.
Collapse
Affiliation(s)
- Kousik Das
- Department of Organic Chemistry, Indian Institute of Science Bangalore India 560012
| | - Abhilash Pedada
- Department of Organic Chemistry, Indian Institute of Science Bangalore India 560012
| | - Tushar Singha
- Department of Organic Chemistry, Indian Institute of Science Bangalore India 560012
| | - Durga Prasad Hari
- Department of Organic Chemistry, Indian Institute of Science Bangalore India 560012
| |
Collapse
|
23
|
Sarkar S, Cheung KPS, Gevorgyan V. Recent Advances in Visible Light Induced Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311972. [PMID: 37957126 PMCID: PMC10922525 DOI: 10.1002/anie.202311972] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Visible light-induced Pd catalysis has emerged as a promising subfield of photocatalysis. The hybrid nature of Pd radical species has enabled a wide array of radical-based transformations otherwise challenging or unknown via conventional Pd chemistry. In parallel to the ongoing pursuit of alternative, readily available radical precursors, notable discoveries have demonstrated that photoexcitation can alter not only oxidative addition but also other elementary steps. This Minireview highlights the recent progress in this area.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| |
Collapse
|
24
|
McNamee RE, Dasgupta A, Christensen KE, Anderson EA. Bridge Cross-Coupling of Bicyclo[1.1.0]butanes. Org Lett 2024; 26:360-364. [PMID: 38156902 PMCID: PMC10789093 DOI: 10.1021/acs.orglett.3c04030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Bicyclo[1.1.0]butanes (BCBs) have gained growing popularity in "strain release" chemistry for the synthesis of four-membered-ring systems and para- and meta-disubstituted arene bioisosteres as well as applications in chemoselective bioconjugation. However, functionalization of the bridge position of BCBs can be challenging due to the inherent strain of the ring system and reactivity of the central C-C bond. Here we report the first late-stage bridge cross-coupling of BCBs, mediated by directed metalation/palladium catalysis.
Collapse
Affiliation(s)
- Ryan E. McNamee
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ayan Dasgupta
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kirsten E. Christensen
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Edward A. Anderson
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
25
|
Dasgupta A, Bhattacharjee S, Tong Z, Guin A, McNamee RE, Christensen KE, Biju AT, Anderson EA. Stereoselective Alder-Ene Reactions of Bicyclo[1.1.0]butanes: Facile Synthesis of Cyclopropyl- and Aryl-Substituted Cyclobutenes. J Am Chem Soc 2024; 146:1196-1203. [PMID: 38157245 PMCID: PMC10786042 DOI: 10.1021/jacs.3c13080] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Bicyclo[1.1.0]butanes (BCBs), strained carbocycles comprising two fused cyclopropane rings, have become well-established building blocks in organic synthesis, medicinal chemistry, and chemical biology due to their diverse reactivity profile with radicals, nucleophiles, cations, and carbenes. The constraints of the bicyclic ring system confer high p-character on the interbridgehead C-C bond, leading to this broad reaction profile; however, the use of BCBs in pericyclic processes has to date been largely overlooked in favor of such stepwise, non-concerted additions. Here, we describe the use of BCBs as substrates for ene-like reactions with strained alkenes and alkynes, which give rise to cyclobutenes decorated with highly substituted cyclopropanes and arenes. The former products are obtained from highly stereoselective reactions with cyclopropenes, generated in situ from vinyl diazoacetates under blue light irradiation (440 nm). Cyclobutenes featuring a quaternary aryl-bearing carbon atom are prepared from equivalent reactions with arynes, which proceed in high yields under mild conditions. Mechanistic studies highlight the importance of electronic effects in this chemistry, while computational investigations support a concerted pathway and rationalize the excellent stereoselectivity of reactions with cyclopropenes.
Collapse
Affiliation(s)
- Ayan Dasgupta
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Subrata Bhattacharjee
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
| | - Zixuan Tong
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Avishek Guin
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
| | - Ryan E. McNamee
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kirsten E. Christensen
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Akkattu T. Biju
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
| | - Edward A. Anderson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
26
|
Ni D, Hu S, Tan X, Yu Y, Li Z, Deng L. Intermolecular Formal Cycloaddition of Indoles with Bicyclo[1.1.0]butanes by Lewis Acid Catalysis. Angew Chem Int Ed Engl 2023; 62:e202308606. [PMID: 37583090 DOI: 10.1002/anie.202308606] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Herein, we develop a new approach to directly access architecturally complex polycyclic indolines from readily available indoles and bicyclo[1.1.0]butanes (BCBs) through formal cycloaddition promoted by commercially available Lewis acids. The reaction proceeded through a stepwise pathway involving a nucleophilic addition of indoles to BCBs followed by an intramolecular Mannich reaction to form rigid indoline-fused polycyclic structures, which resemble polycyclic indole alkaloids. This new reaction tolerated a wide range of indoles and BCBs, thereby allowing the one-step construction of various rigid indoline polycycles containing up to four contiguous quaternary carbon centers.
Collapse
Affiliation(s)
- Dongshun Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Sai Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Xiangyu Tan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Yang Yu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Zhenghua Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| |
Collapse
|
27
|
Tang L, Xiao Y, Wu F, Zhou JL, Xu TT, Feng JJ. Silver-Catalyzed Dearomative [2π+2σ] Cycloadditions of Indoles with Bicyclobutanes: Access to Indoline Fused Bicyclo[2.1.1]hexanes. Angew Chem Int Ed Engl 2023; 62:e202310066. [PMID: 37822277 DOI: 10.1002/anie.202310066] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Bicyclo[2.1.1]hexanes (BCHs) are becoming ever more important in drug design and development as bridged scaffolds that provide underexplored chemical space, but are difficult to access. Here a silver-catalyzed dearomative [2π+2σ] cycloaddition strategy for the synthesis of indoline fused BCHs from N-unprotected indoles and bicyclobutane precursors is described. The strain-release dearomative cycloaddition operates under mild conditions, tolerating a wide range of functional groups. It is capable of forming BCHs with up to four contiguous quaternary carbon centers, achieving yields of up to 99 %. In addition, a scale-up experiment and the synthetic transformations of the cycloadducts further highlighted the synthetic utility.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
28
|
Xiao Y, Xu TT, Zhou JL, Wu F, Tang L, Liu RY, Wu WB, Feng JJ. Photochemical α-selective radical ring-opening reactions of 1,3-disubstituted acyl bicyclobutanes with alkyl halides: modular access to functionalized cyclobutenes. Chem Sci 2023; 14:13060-13066. [PMID: 38023515 PMCID: PMC10664698 DOI: 10.1039/d3sc04457b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Although ring-opening reactions of bicyclobutanes bearing electron-withdrawing groups, typically with β-selectivity, have evolved as a powerful platform for synthesis of cyclobutanes, their application in the synthesis of cyclobutenes remains underdeveloped. Here, a novel visible light induced α-selective radical ring-opening reaction of 1,3-disubstituted acyl bicyclobutanes with alkyl radical precursors for the synthesis of functionalized cyclobutenes is described. In particular, primary, secondary, and tertiary alkyl halides are all suitable substrates for this photocatalytic transformation, providing ready access to cyclobutenes with a single all-carbon quaternary center, or with two contiguous centers under mild reaction conditions.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Ruo-Yi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
29
|
Zhang Z, Gevorgyan V. Escape from Hydrofunctionalization: Palladium Hydride-Enabled Difunctionalization of Conjugated Dienes and Enynes. Angew Chem Int Ed Engl 2023; 62:e202311848. [PMID: 37788158 PMCID: PMC10842412 DOI: 10.1002/anie.202311848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Palladium hydrides are traditionally employed in hydrofunctionalization (i.e. monofunctionalization) of conjugated dienes and enynes, owning to its facile protic hydropalladation of electron-rich (or neutral) unsaturated bonds. Herein, we report a mild PdH-catalyzed difunctionalization of conjugated dienes and enynes. This protocol is enabled by the chemoselectivity switch of the initial hydropalladation step achieved by visible light enhancement of hydricity of PdH species. This method allows for cascade annulation of dienes and enynes with various easily available and abundant substrates, such as acrylic acids, acrylic amides, and Baylis-Hillman adducts, toward a wide range of alkenyl or alkynyl lactones, lactams, and tetrahydrofurans. This protocol also provides an easy access to complex spiro-fused tricyclic frameworks.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| |
Collapse
|
30
|
Brals J, McGuire TM, Watson AJB. A Chemoselective Polarity-Mismatched Photocatalytic C(sp 3 )-C(sp 2 ) Cross-Coupling Enabled by Synergistic Boron Activation. Angew Chem Int Ed Engl 2023; 62:e202310462. [PMID: 37622419 PMCID: PMC10952440 DOI: 10.1002/anie.202310462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
We report the development of a C(sp3 )-C(sp2 ) coupling reaction using styrene boronic acids and redox-active esters under photoredox catalysis. The reaction proceeds through an unusual polarity-mismatched radical addition mechanism that is orthogonal to established processes. Synergistic activation of the radical precursor and organoboron are critical mechanistic events. Activation of an N-hydroxyphthalimide (NHPI) ester by coordination to boron enables electron transfer, with decomposition leading to a nucleofuge rebound, activating the organoboron to radical addition. The unique mechanism enables chemoselective coupling of styrene boronic acids in the presence of other alkene radical acceptors. The scope and limitations of the reaction, and a detailed mechanistic investigation are presented.
Collapse
Affiliation(s)
- Jeremy Brals
- EaStCHEMSchool of ChemistryUniversity of St AndrewsPurdie Building, North HaughSt AndrewsKY16 9STUK
| | - Thomas M. McGuire
- AstraZenecaDarwin Building, Unit 310Cambridge Science Park, Milton RoadCambridgeCB4 0WGUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of St AndrewsPurdie Building, North HaughSt AndrewsKY16 9STUK
| |
Collapse
|
31
|
Abstract
The concept of strain in organic compounds is as old as modern organic chemistry and was initially introduced to justify the synthetic setbacks along the synthesis of small ring systems (pars construens of strain). In the last decades, chemists have developed an arsenal of strain-release reactions (pars destruens of strain) which can generate─with significant driving force─rigid aliphatic systems that can act as three-dimensional alternatives to (hetero)arenes. Photocatalysis added an additional dimension to strain-release processes by leveraging the energy of photons to create chemical complexity under mild conditions. This perspective presents the latest advancements in strain-release photocatalysis─with emphases on mechanisms, catalytic cycles, and current limitations─the unique chemical architectures that can be produced, and possible future directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York 10021, New York United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
32
|
Tang L, Huang QN, Wu F, Xiao Y, Zhou JL, Xu TT, Wu WB, Qu S, Feng JJ. C(sp 2)-H cyclobutylation of hydroxyarenes enabled by silver-π-acid catalysis: diastereocontrolled synthesis of 1,3-difunctionalized cyclobutanes. Chem Sci 2023; 14:9696-9703. [PMID: 37736637 PMCID: PMC10510764 DOI: 10.1039/d3sc03258b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Ring-opening of bicyclo[1.1.0]butanes (BCBs) is emerging as a powerful strategy for 1,3-difunctionalized cyclobutane synthesis. However, reported radical strain-release reactions are typically plagued with diastereoselectivity issues. Herein, an atom-economic protocol for the highly chemo- and diastereoselective polar strain-release ring-opening of BCBs with hydroxyarenes catalyzed by a π-acid catalyst AgBF4 has been developed. The use of readily available starting materials, low catalyst loading, high selectivity (up to >98 : 2 d.r.), a broad substrate scope, ease of scale-up, and versatile functionalizations of the cyclobutane products make this approach very attractive for the synthesis of 1,1,3-trisubstituted cyclobutanes. Moreover, control experiments and theoretical calculations were performed to illustrate the reaction mechanism and selectivity.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Qi-Nan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Shuanglin Qu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
33
|
Chen D, Li J, Liu G, Zhang X, Wang X, Liu Y, Liu X, Liu X, Li Y, Shan Y. Accessing indole-isoindole derivatives via palladium-catalyzed [3+2] cyclization of isocyanides with alkynyl imines. Chem Commun (Camb) 2023; 59:10540-10543. [PMID: 37566103 DOI: 10.1039/d3cc02654j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A facile protocol for the preparation of indole-isoindole derivatives was developed and proceeds via a palladium-catalyzed [3+2] cyclization of isocyanides with alkynyl imines. In this transformation, the palladium catalyst has a triple role, serving simultaneously as a π acid, a transition-metal catalyst and a hydride ion donor, thus enabling the dual function of isocyanide both as a C1 synthon for cyanation and a C1N1 synthon for imidoylation. Significantly, the reaction is the sole successful example for accessing indole-isoindole derivatives, and will open up new avenues to assemble unique N-heterocycle frameworks. Furthermore, the synthetic value of this protocol is demonstrated in the late-stage modification of physiologically active molecules and in the construction of aggregation-induced emission compounds.
Collapse
Affiliation(s)
- Dianpeng Chen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianming Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Gongle Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiuhua Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongwei Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xuan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xinghai Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongqin Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yingying Shan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
34
|
Chen PF, Li DS, Ou WT, Xue F, Deng HP. 2-Isopropylthioxanthone-Catalyzed Divergent Functionalization of Bicyclo[1.1.0]butanes under Visible-Light Irradiation. Org Lett 2023; 25:6184-6188. [PMID: 37559181 DOI: 10.1021/acs.orglett.3c02332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
1,3-Functionalized cyclobutane structural motifs are ubiquitous in natural products and pharmaceuticals. Photoinduced alkylation of bicyclo[1.1.0]butanes (BCBs) offers a step-economical strategy for accessing 1,3-functionalized cyclobutane motifs. Herein, we disclose a general and mild photocatalytic protocol of bromoallylation and alkylation of BCBs in a metal, additive-free manner by using the same photocatalyst, 2-isopropylthioxanthone, in different catalytic roles. Furthermore, the synthetic utility of these products was illustrated in the synthesis of various valuable and complex cyclobutane derivatives.
Collapse
Affiliation(s)
- Peng-Fei Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wei-Tong Ou
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
35
|
Kvasovs N, Fang J, Kliuev F, Gevorgyan V. Merging of Light/Dark Palladium Catalytic Cycles Enables Multicomponent Tandem Alkyl Heck/Tsuji-Trost Homologative Amination Reaction toward Allylic Amines. J Am Chem Soc 2023; 145:18497-18505. [PMID: 37556443 PMCID: PMC10750327 DOI: 10.1021/jacs.3c04968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A visible light-induced palladium-catalyzed homologative three-component synthesis of allylic amines has been developed. This protocol proceeds via a unique mechanism involving two distinct cycles enabled by the same Pd(0) catalyst: a visible light-induced hybrid radical alkyl Heck reaction between 1,1-dielectrophile and styrene, followed by the "in dark" classical Tsuji-Trost-type allylic substitution reaction. This method works well with a broad range of primary and secondary amines, aryl alkenes, dielectrophiles, and in complex settings. The regiochemistry of the obtained products is primarily governed by the structure of 1,1-dielectrophile. Involvement of π-allyl palladium intermediates allowed for the control of stereoselectivity, which has been demonstrated with up to 95:5 er.
Collapse
Affiliation(s)
- Nikita Kvasovs
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Jian Fang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Fedor Kliuev
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
36
|
Lu WD, Zheng Y, Zhang ZP, Chen HB, Chen K, Xiang HY, Yang H. Visible-Light-Induced, Palladium-Mediated Desaturation/Sulfonation Cascade To Access 4-Sulfonyltetrahydropyridine Scaffolds. Org Lett 2023; 25:6077-6081. [PMID: 37550862 DOI: 10.1021/acs.orglett.3c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Herein, we report a visible-light-induced, palladium-catalyzed desaturation/sulfonation cascade, offering a concise route to a series of highly valuable 4-sulfonyltetrahydropyridine scaffolds from inexpensive and readily available piperidine derivatives with sodium sulfinates. The key to the success of this transformation is the well-designed sequence of palladium-mediated 1,5-hydrogen atom transfer/β-hydride elimination/allylic sulfonation process, which demonstrates the synthetic potentials for orchestrating synthetic events by rationally taking advantage of varied catalytic modes.
Collapse
Affiliation(s)
- Wei-Dong Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Zhi-Peng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
- Jiangxi Time Chemical Company, Limited, Fuzhou, Jiangxi 344800, People's Republic of China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| |
Collapse
|
37
|
Mancinelli JP, Kong WY, Guo W, Tantillo DJ, Wilkerson-Hill SM. Borane-Catalyzed C-F Bond Functionalization of gem-Difluorocyclopropenes Enables the Synthesis of Orphaned Cyclopropanes. J Am Chem Soc 2023; 145:17389-17397. [PMID: 37494703 DOI: 10.1021/jacs.3c05278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, we disclose an approach to synthesize tert-alkyl cyclopropanes by leveraging C-F bond functionalization of gem-difluorocyclopropenes using tris(pentafluorophenyl)borane catalysis. The reaction proceeds through the intermediacy of a fluorocyclopropenium ion, which was confirmed by the isolation of [Ph2(C6D5)C3]+[(C6F5)3BF]-. We found that silylketene acetal nucleophiles were optimal reaction partners with fluorocyclopropenium ion intermediates yielding fully substituted cyclopropenes functionalized with two α-tert-alkyl centers (63-93% yield). The regioselectivity of the addition to cyclopropenium ions is controlled by their steric and electronic properties and enables access to 3,3-bis(difluoromethyl)cyclopropenes in short order. The resulting cyclopropene products are readily reduced to the corresponding orphaned cyclopropanes under hydrogenation conditions. Quantum chemical calculations reveal the nature of the C-F bond cleavage steps and provide evidence for catalysis by boron and not silylated oxonium ions, though Si-F bond formation is the enthalpic driving force for the reaction.
Collapse
Affiliation(s)
- Joseph P Mancinelli
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Sidney M Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
38
|
Zhao H, Lin Y, Jiang M, Su B. A general catalytic synthetic strategy for highly strained methylenecyclobutanes and spiromethylenecyclobutanes. Chem Sci 2023; 14:7897-7904. [PMID: 37502320 PMCID: PMC10370550 DOI: 10.1039/d3sc01103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
Highly strained methylenecyclobutanes (MCBs) are intriguing scaffolds in synthetic chemistry and drug discovery, but there is no such strategy that enables the synthesis of structurally diverse MCBs with defined stereochemistry. We report a general synthetic strategy for (boromethylene)cyclobutanes (BMCBs) and spiro-BMCBs by a challenging Cu-catalyzed highly chemo-, stereo-, and regioselective borylative cyclization of aliphatic alkynes. This strategy not only enables the installation of various functionalities at each site on the MCB skeleton with unambiguous stereochemistry but also introduces a versatile boromethylene unit that is readily transformable to a wide range of new functional groups; these features significantly expand the structural diversity of MCBs and are particularly valuable in drug discovery. The concise and divergent total syntheses of four cyclobutane-containing natural products were achieved from one common BMCB obtained by this strategy. The origin of the high regioselectivity in the borylcupration of alkynes and the high efficiency of the strained ring cyclization was also studied.
Collapse
Affiliation(s)
- Haotian Zhao
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Jinnan District Tianjin 300350 P. R. China
| | - Yu Lin
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Jinnan District Tianjin 300350 P. R. China
| | - Mingyu Jiang
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Jinnan District Tianjin 300350 P. R. China
| | - Bo Su
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Jinnan District Tianjin 300350 P. R. China
| |
Collapse
|
39
|
Sarkar S, Ghosh S, Kurandina D, Noffel Y, Gevorgyan V. Enhanced Excited-State Hydricity of Pd-H Allows for Unusual Head-to-Tail Hydroalkenylation of Alkenes. J Am Chem Soc 2023; 145:12224-12232. [PMID: 37224263 PMCID: PMC10750326 DOI: 10.1021/jacs.3c02410] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Photoinduced enhancement of hydricity of palladium hydride species enables unprecedented hydride addition-like ("hydridic") hydropalladation of electron-deficient alkenes, which allows for chemoselective head-to-tail cross-hydroalkenylation of electron-deficient and electron-rich alkenes. This mild and general protocol works with a wide range of densely functionalized and complex alkenes. Notably, this approach also allows for highly challenging cross-dimerization of electronically diverse vinyl arenes and heteroarenes.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Soumen Ghosh
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Daria Kurandina
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Yusuf Noffel
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
40
|
Sheng XX, Du YJ, Li JH, Teng QQ, Chen M. Photoinduced Nitrogen-to-Alkyl Radical Relay Heck Reaction of o-Alkylbenzamides with Vinyl Arenes by Palladium Catalysis. Org Lett 2023; 25:3664-3669. [PMID: 37171228 DOI: 10.1021/acs.orglett.3c01030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Here, a palladium-catalyzed photoinduced N-to-alkyl radical relay Heck reaction of o-alkylbenzamides at benzylic sites with vinyl arenes is described. The reaction employs neither exogeneous photosensitizers nor external oxidants. It is proposed to proceed via a N-to-alkyl hybrid palladium-radical mechanism which occurs under mild conditions that are compatible with a wide range of functional groups. The products are easily transformed to azepinone derivatives, which are prevalent in pharmaceuticals and natural products.
Collapse
Affiliation(s)
- Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Yu-Jia Du
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Jun-Hua Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Qiao-Qiao Teng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| |
Collapse
|
41
|
Bicyclobutanes as unusual building blocks for complexity generation in organic synthesis. Commun Chem 2023; 6:9. [PMID: 36697911 PMCID: PMC9837078 DOI: 10.1038/s42004-022-00811-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Bicyclobutanes are among the most highly strained isolable organic compounds and their associated low activation barriers to reactivity make them intriguing building-blocks in organic chemistry. In recent years, numerous creative synthetic strategies exploiting their heightened reactivity have been presented and these discoveries have often gone hand-in-hand with the development of more practical routes for their synthesis. Their proclivity as strain-release reagents through their weak central C-C bond has been harnessed in a variety of addition, rearrangement and insertion reactions, providing rapid access to a rich tapestry of complex molecular scaffolds. This review will provide an overview of the different options available for bicyclobutane synthesis, the main classes of compounds that can be prepared from bicyclobutanes, and the associated modes of reactivity used.
Collapse
|