1
|
Jiang S, Zhang T, Luo XY, Dong S, Ma JT, Xiao LJ. Ligand-Controlled Regiodivergent Carbosilylation of 1,3-Dienes via Nickel-Catalyzed Three-Component Coupling Reactions. Angew Chem Int Ed Engl 2025:e202504494. [PMID: 40178160 DOI: 10.1002/anie.202504494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
The regiodivergent carbosilylation of 1,3-dienes presents a formidable challenge due to inherently complex selectivity control over multiple potential reaction pathways. Here, we report a ligand-controlled, regiodivergent carbosilylation of 1,3-dienes with aldehydes and silylboranes, achieving unprecedented site-selectivity using nickel catalysts with distinct phosphine ligands. The use of triethylphosphine promotes 4,3-addition selectivity, while employing (2-biphenyl)dicyclohexylphosphine facilitates 4,1-addition selectivity. This method displays excellent regio- and diastereoselectivity, as well as a broad substrate scope and substantial functional group tolerance. Mechanistic studies indicate that the ligand choice is crucial for directing the reaction pathway and stabilizing π-allyl-nickel intermediates. Our protocol provides a practical and efficient approach to synthesizing valuable functionalized allylsilanes, which are important in various synthetic applications.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Tianze Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Xiao-Yuan Luo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Shoucheng Dong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Jin-Tao Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Thompson J, Le NH, Pluemer J, Chen R, Dooley CJ, Ziller JW, Rychnovsky SD. Cyclic Osmate Esters from 1,2- and 1,3-Diols and α-Hydroxy Acids for X-ray Analysis. J Org Chem 2025; 90:2493-2499. [PMID: 39908581 PMCID: PMC11833874 DOI: 10.1021/acs.joc.4c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
We previously demonstrated that osmium tetroxide and TMEDA generate stable crystalline adducts with alkenes that facilitate X-ray analysis and structure assignments. Alternatively, osmate esters can be prepared from diols, potassium osmate, and TMEDA·2TsOH in a nonoxidative condensation reaction. This new approach provides a convenient route to form stable, crystalline osmate(VI) esters for X-ray analysis. Because it is redox neutral, it works with a variety of diol substrates, including 1,3-diols, that cannot be prepared from alkenes. α-Hydroxy acids also form stable osmate esters in reasonable yields and readily crystallize. An alternative ligand screen was performed to assess the improved crystallinity from substituted TMEDA analogues. The enhanced crystallinity of osmate esters and the incorporation of a heavy atom make a reliable determination of structure and absolute configuration routine.
Collapse
Affiliation(s)
- Jordan
C. Thompson
- Department of Chemistry, University of California at Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Ngoc H. Le
- Department of Chemistry, University of California at Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Jace Pluemer
- Department of Chemistry, University of California at Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Ruby Chen
- Department of Chemistry, University of California at Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | | | - Joseph W. Ziller
- Department of Chemistry, University of California at Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Scott D. Rychnovsky
- Department of Chemistry, University of California at Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
3
|
Wu Q, Zhang Z, Chong Q, Meng F. Photoredox/Cobalt-Catalyzed Chemo-, Regio-, Diastereo- and Enantioselective Reductive Coupling of 1,1-Disubstituted Allenes and Cyclobutenes. Angew Chem Int Ed Engl 2025; 64:e202416524. [PMID: 39715712 DOI: 10.1002/anie.202416524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
A dual photoredox/cobalt-catalyzed protocol for chemo-, regio-, diastereo- and enantioselective reductive coupling of 1,1-disubstituted allenes and cyclobutenes through chemo-, regio-, diastereo- and enantioselective oxidative cyclization followed by stereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such process represents an unprecedented reaction pathway for cobalt catalysis that enables selective transformation of the less sterically congested alkenes of 1,1-disubstituted allenes with cyclobutenes, incorporating a broad scope of tetrasubstituted alkenes into the cyclobutane scaffolds in up to 86 % yield, >98 : 2 chemo- and regioselectivity, >98 : 2 dr and >99.5:0.5 er. Functionalization delivered a variety of enantioenriched cyclobutanes that are otherwise difficult to access. Preliminary mechanistic studies revealed that the reactions proceeded through oxidative cyclization followed by protonation and protonation might be the rate-determining step.
Collapse
Affiliation(s)
- Qianghui Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei, 430079, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| |
Collapse
|
4
|
Wang Y, Wang D, Wang S, Chong Q, Zhang Z, Meng F. Cobalt-Catalyzed Regio-, Diastereo- and Enantioselective Reductive Coupling of 1,3-Dienes and Aldehydes. Angew Chem Int Ed Engl 2025; 64:e202413313. [PMID: 39230052 DOI: 10.1002/anie.202413313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024]
Abstract
Catalytic regio-, diastereo- and enantioselective reductive coupling of 1,3-dienes and aldehydes through regio- and enantioselective oxidative cyclization followed by regio- and diastereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such processes represent an unprecedented reaction pathway for cobalt catalysis that enable selective transformation of the more substituted alkene in 1,3-dienes, affording a broad scope of bishomoallylic alcohols without the need of pre-formation of stoichiometric amounts of sensitive organometallic reagents in up to 98 % yield, >98 : 2 regioselectivity, >98 : 2 dr and 98 : 2 er. Application of this method to construction of axial stereogenicity and deuterated stereogenic center provided a wide range of multifunctional chiral building blocks that are otherwise difficult to access. DFT calculations revealed the origin of regio- and stereoselectivity as well as a unique oxidative cyclization mechanism for cobalt catalysis.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
| | - Danrui Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Shilin Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei, 430079, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| |
Collapse
|
5
|
Bender T, Fürstner A. Enantioselective Synthesis of vic-Aminoalcohol Derivatives by Nickel-Catalyzed Reductive Coupling of Aldehydes with Protected Amino-pentadienoates. J Am Chem Soc 2024; 146:33295-33301. [PMID: 39576228 PMCID: PMC11638964 DOI: 10.1021/jacs.4c12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
A VAPOL-derived phosphoramidite ligand is uniquely effective at reverting the regiochemical course of nickel-catalyzed reactions of aldehydes with carbamate-protected 5-amino-2,4-pentadienoates as "push/pull" dienes; the ensuing carbonyl α-amino-homoallylation reaction affords anti-configured vic-aminoalcohol derivatives in good yields with high optical purity. The reductive coupling is conveniently performed with a bench-stable Ni(0) precatalyst and Et3B as the promoter.
Collapse
Affiliation(s)
- Thilo Bender
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
6
|
Zhang KX, Liu MY, Yao BY, Zhou QL, Xiao LJ. Stereoconvergent and Enantioselective Synthesis of Z-Homoallylic Alcohols via Nickel-Catalyzed Reductive Coupling of Z/ E-1,3-Dienes with Aldehydes. J Am Chem Soc 2024; 146:22157-22165. [PMID: 39102638 DOI: 10.1021/jacs.4c07907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Stereoconvergent reactions enable the transformation of mixed stereoisomers into well-defined, chiral products─a crucial strategy for handling Z/E-mixed olefins, which are common but challenging substrates in organic synthesis. Herein, we report a stereoconvergent and highly enantioselective method for synthesizing Z-homoallylic alcohols via the nickel-catalyzed reductive coupling of Z/E-mixed 1,3-dienes with aldehydes. This process is enabled by an N-heterocyclic carbene ligand characterized by C2-symmetric backbone chirality and bulky 2,6-diisopropyl N-aryl substituents. Our method achieves excellent stereocontrol over both enantioselectivity and Z-selectivity in a single step, producing chiral Z-homoallylic alcohols that are valuable in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Kai-Xiang Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Mei-Yu Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Bo-Ying Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Zeng XW, Lin JN, Shu W. Hydrogen Source Tuned Regiodivergent Asymmetric Hydroalkylations of 2-Substituted 1,3-Dienes with Aldehydes by Cobalt-Catalysis. Angew Chem Int Ed Engl 2024; 63:e202403073. [PMID: 38567830 DOI: 10.1002/anie.202403073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Indexed: 05/03/2024]
Abstract
Catalytic methods allowing for the reliable prediction and control of diverse regioselectivity along with the control of enantioselectivity to access different regio- and enantiomers by switching the least reaction parameters are one of the most attractive ways in organic synthesis, which provide access to diverse enantioenriched architectures from identical starting materials. Herein, a Co-catalyzed regiodivergent and enantioselective reductive hydroalkylation of 1,3-dienes with aldehydes has been achieved, furnishing different enantioenriched homoallylic alcohol architectures in good levels of enantioselectivity. The reaction features the switch of regioselectivity tuned by the selection of proton source. The use of an acid as proton source provided asymmetric 1,2-hydroalkylation products under reductive conditions, yet asymmetric 4,3-hydroalkylation products were obtained with silane as hydride source. This catalytic protocol allows for the access of homoallylic alcohols with two continuous saturated carbon centers in good levels of regio-, diastereo-, and enantioselectivity.
Collapse
Affiliation(s)
- Xian-Wang Zeng
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Jia-Ni Lin
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
8
|
Chen ZC, Ouyang Q, Du W, Chen YC. Palladium(0) π-Lewis Base Catalysis: Concept and Development. J Am Chem Soc 2024; 146:6422-6437. [PMID: 38426858 DOI: 10.1021/jacs.3c14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The development of a new catalytic strategy plays a vital role in modern organic chemistry since it permits bond formation in an unprecedented and more efficient manner. Although the application of preformed metal complexes as π-base-activated reagents have enabled diverse transformations elegantly, the concept and strategy by directly utilizing transition metals as efficient π-Lewis base catalysts remain underdeveloped, especially in the field of asymmetric catalysis. Here, we outline our perspective on the discovery of palladium(0) as an efficient π-Lewis base catalyst, which is capable of increasing the highest occupied molecular orbital (HOMO) energy of both electron-neutral and electron-deficient 1,3-dienes and 1,3-enynes upon flexible η2-complexes formed in situ and resultant π-backdonation. Thus, fruitful carbon-carbon-forming reactions with diverse electrophiles can be achieved enantioselectively in a vinylogous addition pattern, which is conceptually different from the classical oxidative cyclization mechanism. Emphasis will be given to the concept and mechanism elucidation, catalytic features, and reaction design together with perspective on the further development of this emerging field.
Collapse
Affiliation(s)
- Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
9
|
Liang SY, Zhang TY, Chen ZC, Du W, Chen YC. Functional-Group-Directed Regiodivergent (3 + 2) Annulations of Electronically Distinct 1,3-Dienes and 2-Formyl Arylboronic Acids. Org Lett 2024; 26:1483-1488. [PMID: 38345825 DOI: 10.1021/acs.orglett.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Presented herein is a palladium-catalyzed asymmetric (3 + 2) annulation reaction between 1,3-dienes and 2-formylarylboronic acids, proceeding in a cascade vinylogous addition and Suzuki coupling process. Both electron-neutral and electron-deficient 1,3-dienes are compatible under similar catalytic conditions, and distinct regioselectivity is observed via functional-group control of 1,3-diene substrates. A collection of 1-indanols with dense functionalities is constructed stereoselectively.
Collapse
Affiliation(s)
- Shu-Yuan Liang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tian-Ying Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610041, China
| |
Collapse
|
10
|
Cao YX, Wodrich MD, Cramer N. Nickel-catalyzed direct stereoselective α-allylation of ketones with non-conjugated dienes. Nat Commun 2023; 14:7640. [PMID: 37993440 PMCID: PMC10665391 DOI: 10.1038/s41467-023-43197-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
The development of efficient and sustainable methods for the construction of carbon-carbon bonds with the simultaneous stereoselective generation of vicinal stereogenic centers is a longstanding goal in organic chemistry. Low-valent nickel(0) complexes which promote α-functionalization of carbonyls leveraging its pro-nucleophilic character in conjunction with suitable olefin acceptors are scarce. We report a Ni(0)NHC catalyst which selectively converts ketones and non-conjugated dienes to synthetically highly valuable α-allylated products. The catalyst directly activates the α-hydrogen atom of the carbonyl substrate transferring it to the olefin acceptor. The transformation creates adjacent quaternary and tertiary stereogenic centers in a highly diastereoselective and enantioselective manner. Computational studies indicate the ability of the Ni(0)NHC catalyst to trigger a ligand-to-ligand hydrogen transfer process from the ketone α-hydrogen atom to the olefin substrate, setting the selectivity of the process. The shown selective functionalization of the α-C-H bond of carbonyl groups by the Ni(0)NHC catalyst opens up new opportunities to exploit sustainable 3d-metal catalysis for a stereoselective access to valuable chiral building blocks.
Collapse
Affiliation(s)
- Yi-Xuan Cao
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Matthew D Wodrich
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Kim JY, Davies TQ, Fürstner A. Aminoalcohol derivatives by nickel-catalyzed enantioselective coupling of imines and dienol ethers. Chem Commun (Camb) 2023; 59:12613-12616. [PMID: 37791515 DOI: 10.1039/d3cc04582j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The reductive coupling of dienol ethers with N-tosylimines catalyzed by Ni(0) in the presence of a VAPOL-derived phosphoramidite ligand follows an unprecedented regiochemical course; it furnishes syn-configured 1,2-aminoalcohol derivatives in good chemical yields with up to 94% ee.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany.
| | - Thomas Q Davies
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany.
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany.
| |
Collapse
|
12
|
Ma JT, Zhang T, Yao BY, Xiao LJ, Zhou QL. Diastereodivergent and Enantioselective Synthesis of Homoallylic Alcohols via Nickel-Catalyzed Borylative Coupling of 1,3-Dienes with Aldehydes. J Am Chem Soc 2023; 145:19195-19201. [PMID: 37616490 DOI: 10.1021/jacs.3c07697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
We present the first enantioselective nickel-catalyzed borylative coupling of 1,3-dienes with aldehydes, providing an efficient route to highly valuable homoallylic alcohols in a single step. The reaction involves the 1,4-carboboration of dienes, leading to the formation of C-C and C-B bonds accompanied by the construction of two continuous stereogenic centers. Enabled by a chiral spiro phosphine-oxazoline nickel complex, this transformation yields products with exceptional diastereoselectivity, E-selectivity, and enantioselectivity. The diastereoselectivity of the reaction can be controlled by employing either (Z)-1,3-dienes or (E)-1,3-dienes.
Collapse
Affiliation(s)
- Jin-Tao Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Tianze Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Bo-Ying Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|