1
|
Hao L, Zhu F, Liu X, Wang D. Spirophosphine-Catalyzed Enantioselective [3 + 2] Cycloaddition of Allenoates and Unsaturated α-Ketimine Esters. Org Lett 2024; 26:8860-8865. [PMID: 39373463 DOI: 10.1021/acs.orglett.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A novel chiral spiro-monophosphine, OUC-Phos, was synthesized and utilized for the first time in the asymmetric Lu's [3 + 2] cycloaddition reaction of β,γ-unsaturated α-ketimine ester with allenoate. OUC-Phos, featuring a 3,3'-diphenyl-modified spirobiindane skeleton, demonstrated exceptional catalytic efficiency in the [3 + 2] cycloaddition to achieve high yields, enantioselectivities, and diastereoselectivities for the targeted products. The broad substrate scope encompassing diverse functional groups demonstrated the versatility of this methodology. Furthermore, the reaction was successfully scaled up, and the products were easily converted into their corresponding functionalized derivatives.
Collapse
Affiliation(s)
- Luyao Hao
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Fangfang Zhu
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xinyu Liu
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - De Wang
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266071, China
| |
Collapse
|
2
|
Jana K, Zhao Z, Musies J, Sparr C. Atroposelective Arene-Forming Wittig Reaction by Phosphorus P III/P V=O Redox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202408159. [PMID: 38940901 DOI: 10.1002/anie.202408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
The Wittig reaction is renowned as exceptionally versatile method for converting a diversity of aldehydes and ketones into alkenes. Recently, strategies for chiral phosphine catalysis under PIII/PV=O redox cycling emerged to render this venerable transformation stereoselective. Herein, we describe that phosphine redox catalysis enables the enantioselective synthesis of pertinent biaryl atropisomers by means of a stereocontrolled arene-forming Wittig reaction. Key to the process is the release of an endogenous base from readily accessible tert-butyloxycarbonylated Morita-Baylis-Hillman adducts triggered by catalyst intramolecularization, permitting mild phosphine redox catalysis for atroposelective Wittig reactions. By this strategy, a broad diversity of biaryl atropisomers is obtained with up to 94 : 6 enantioselectivity.
Collapse
Affiliation(s)
- Kalipada Jana
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Zhengxing Zhao
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Janis Musies
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
3
|
Tönjes J, Medvarić V, Werner T. Synthesis of Trisubstituted Furans from Activated Alkenes by P(III)/P(V) Redox Cycling Catalysis. J Org Chem 2024; 89:10729-10735. [PMID: 39009500 DOI: 10.1021/acs.joc.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The organocatalytic formation of an underrepresented family of trisubstituted and tetrasubstituted furans from activated alkenes and acyl chlorides is reported. In a reaction sequence based on P(III)/P(V) redox cycling catalysis, the cyclic phosphine catalysts react with diacylethenes or acyl acrylates in Michael addition, followed by acylation and either an intramolecular Wittig reaction or a ring closure reaction, liberating the furans. The formed phosphine oxides are reduced in situ by phenylsilane as a terminal reductant. In the first step, 12 diacylethenes were converted to the respective trisubstituted furans. The reaction of acyl acrylates showed a surprising, catalyst-dependent alternate reaction forming tetrasubstituted furans. Two additional methods were developed, giving 14 trisubstituted furans using a phospholene catalyst and an additional 6 tetrasubstituted furans using a phosphetane catalyst. This encompassed 19 newly described compounds.
Collapse
Affiliation(s)
- Jan Tönjes
- Leibniz Institute for Catalysis at the University of Rostock (LIKAT Rostock), Albert Einstein Str. 29a, Rostock D-18059, Germany
| | - Viktorija Medvarić
- Leibniz Institute for Catalysis at the University of Rostock (LIKAT Rostock), Albert Einstein Str. 29a, Rostock D-18059, Germany
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Str. 100, Paderborn D-33098, Germany
| | - Thomas Werner
- Leibniz Institute for Catalysis at the University of Rostock (LIKAT Rostock), Albert Einstein Str. 29a, Rostock D-18059, Germany
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Str. 100, Paderborn D-33098, Germany
| |
Collapse
|
4
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
5
|
You P, Liu M, Zhang K, Yang F, Tan Z, Chen F. Highly enantio- and diastereoselective construction of spirocyclic oxindoles via a palladium-catalyzed decarboxylative asymmetric [4 + 2] annulation strategy. Org Biomol Chem 2024; 22:4466-4471. [PMID: 38771218 DOI: 10.1039/d4ob00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A palladium-catalyzed decarboxylative asymmetric [4 + 2] annulation of methyleneindolinones with a zwitterionic oxo-1,4-dipole intermediate was successfully developed to access spirocyclic oxindoles bearing two vicinal stereocenters in good yields with high diastereoselectivities and enantioselectivities. This strategy features a broad substrate scope (28 examples), allowing for efficient scale-up. Further selective transformation of the product and preliminary mechanistic studies were conducted.
Collapse
Affiliation(s)
- Pengyuan You
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433, Shanghai, China.
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433, Shanghai, China.
| | - Ke Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433, Shanghai, China.
| | - Fan Yang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433, Shanghai, China.
| | - Zequn Tan
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433, Shanghai, China.
| | - Fener Chen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433, Shanghai, China.
| |
Collapse
|
6
|
Yang H, Zhang J, Zhang S, Xue Z, Hu S, Chen Y, Tang Y. Chiral Bisphosphine-Catalyzed Asymmetric Staudinger/aza-Wittig Reaction: An Enantioselective Desymmetrizing Approach to Crinine-Type Amaryllidaceae Alkaloids. J Am Chem Soc 2024; 146:14136-14148. [PMID: 38642063 DOI: 10.1021/jacs.4c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
An unprecedented chiral bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction of 2,2-disubstituted cyclohexane-1,3-diones is reported, enabling the facile access of a broad range of cis-3a-arylhydroindoles in high yields with excellent enantioselectivities. The key to the success of this work relies on the first application of chiral bisphosphine DuanPhos to the asymmetric Staudinger/aza-Wittig reaction. An effective reductive system has been established to address the challenging PV═O/PIII redox cycle associated with the chiral bisphosphine catalyst. In addition, comprehensive experimental and computational investigations were carried out to elucidate the mechanism of the asymmetric reaction. Leveraging the newly developed chemistry, the enantioselective total syntheses of several crinine-type Amaryllidaceae alkaloids, including (+)-powelline, (+)-buphanamine, (+)-vittatine, and (+)-crinane, have been accomplished with remarkable conciseness and efficiency.
Collapse
Affiliation(s)
- Hongzhi Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Sen Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhengwen Xue
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shengkun Hu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yi Chen
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Zhang J, Kong WY, Guo W, Tantillo DJ, Tang Y. Combined Computational and Experimental Study Reveals Complex Mechanistic Landscape of Brønsted Acid-Catalyzed Silane-Dependent P═O Reduction. J Am Chem Soc 2024; 146:13983-13999. [PMID: 38736283 DOI: 10.1021/jacs.4c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The reaction mechanism of Brønsted acid-catalyzed silane-dependent P═O reduction has been elucidated through combined computational and experimental methods. Due to its remarkable chemo- and stereoselective nature, the Brønsted acid/silane reduction system has been widely employed in organophosphine-catalyzed transformations involving P(V)/P(III) redox cycle. However, the full mechanistic profile of this type of P═O reduction has yet to be clearly established to date. Supported by both DFT and experimental studies, our research reveals that the reaction likely proceeds through mechanisms other than the widely accepted "dual activation mode by silyl ester" or "acid-mediated direct P═O activation" mechanism. We propose that although the reduction mechanisms may vary with the substitution patterns of silane species, Brønsted acid generally activates the silane rather than the P═O group in transition structures. The proposed activation mode differs significantly from that associated with traditional Brønsted acid-catalyzed C═O reduction. The uniqueness of P═O reduction originates from the dominant Si/O═P orbital interactions in transition structures rather than the P/H-Si interactions. The comprehensive mechanistic landscape provided by us will serve as a guidance for the rational design and development of more efficient P═O reduction systems as well as novel organophosphine-catalyzed reactions involving P(V)/P(III) redox cycle.
Collapse
Affiliation(s)
- Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Qian J, Zhou L, Peng R, Tong X. (3+2) Annulation of 4-Acetoxy Allenoate with Aldimine Enabled by AgF-Assisted P(III)/P(V) Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315188. [PMID: 37985927 DOI: 10.1002/anie.202315188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A phosphine-catalyzed (3+2) annulation of 4-acetoxy allenoate and aldimine with the assistance of AgF is described. The success of this reaction hinges on the metathesis between the enolate-phosphonium zwitterion and AgF, leading to a key intermediate comprising of silver enolate and a fluorophosphorane P(V)-moiety. The former is able to undergo a Mannich reaction with aldimine, whereas the latter initiates a cascade sequence of AcO-elimination/aza-addition, thus furnishing the P(III)/P(V) catalysis. By taking advantage of the silver enolate, a preliminary attempt at an asymmetric variant was conducted with the combination of an achiral phosphine catalyst and a chiral bis(oxazolinyl)pyridine ligand (PyBox), giving moderate enantioselectivity.
Collapse
Affiliation(s)
- Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Lijin Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Rouxuan Peng
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| |
Collapse
|
9
|
Moser D, Jana K, Sparr C. Atroposelective P III /P V =O Redox Catalysis for the Isoquinoline-Forming Staudinger-aza-Wittig Reaction. Angew Chem Int Ed Engl 2023; 62:e202309053. [PMID: 37486685 DOI: 10.1002/anie.202309053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
Herein, we describe the feasibility of atroposelective PIII /PV =O redox organocatalysis by the Staudinger-aza-Wittig reaction. The formation of isoquinoline heterocycles thereby enables the synthesis of a broad range of valuable atropisomers under mild conditions with enantioselectivities of up to 98 : 2 e.r. Readily prepared azido cinnamate substrates convert in high yield with stereocontrol by a chiral phosphine catalyst, which is regenerated using a silane reductant under Brønsted acid co-catalysis. The reaction provides access to diversified aryl isoquinolines, as well as benzoisoquinoline and naphthyridine atropisomers. The products are expeditiously transformed into N-oxides, naphthol and triaryl phosphine variants of prevalent catalysts and ligands. With dinitrogen release and aromatization as ideal driving forces, it is anticipated that atroposelective redox organocatalysis provides access to a multitude of aromatic heterocycles with precise control over their configuration.
Collapse
Affiliation(s)
- Daniel Moser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Kalipada Jana
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
10
|
Wei J, Gandon V, Zhu Y. Amino Acid-Derived Ionic Chiral Catalysts Enable Desymmetrizing Cross-Coupling to Remote Acyclic Quaternary Stereocenters. J Am Chem Soc 2023; 145:16796-16811. [PMID: 37471696 PMCID: PMC10401725 DOI: 10.1021/jacs.3c04877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Synthetic application of asymmetric catalysis relies on strategic alignment of bond construction to creation of chirality of a target molecule. Remote desymmetrization offers distinctive advantages of spatial decoupling of catalytic transformation and generation of a stereogenic element. However, such spatial separation presents substantial difficulties for the chiral catalyst to discriminate distant enantiotopic sites through a reaction three or more bonds away from a prochirality center. Here, we report a strategy that establishes acyclic quaternary carbon stereocenters through cross-coupling reactions at distal positions of aryl substituents. The new class of amino acid-derived ionic chiral catalysts enables desymmetrizing (enantiotopic-group-selective) Suzuki-Miyaura reaction, Sonogashira reaction, and Buchwald-Hartwig amination between diverse diarylmethane scaffolds and aryl, alkynyl, and amino coupling partners, providing rapid access to enantioenriched molecules that project substituents to widely spaced positions in the three-dimensional space. Experimental and computational investigations reveal electrostatic steering of substrates by the C-terminus of chiral ligands through ionic interactions. Cooperative ion-dipole interactions between the catalyst's amide group and potassium cation aid in the preorganization that transmits asymmetry to the product. This study demonstrates that it is practical to achieve precise long-range stereocontrol through engineering the spatial arrangements of the ionic catalysts' substrate-recognizing groups and metal centers.
Collapse
Affiliation(s)
- Junqiang Wei
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Paris-Saclay University, bâtiment Hesnri Moissan, 17 avenue des sciences, 91400 Orsay, France
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|