1
|
Sethy R, Brosseau A, Nakashima T, Kawai T, Métivier R. Fluorescence Microscopy Imaging of Light-Harvesting in Self-Assembled Nanofibers of Naphthalenediimides toward Perylenediimide Guests. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10976-10985. [PMID: 39931790 DOI: 10.1021/acsami.4c19675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The self-assembly of a bichromophoric naphthalenediimide (NDI) into nanofibers showed efficient energy transfer (light-harvesting) to perylenediimide (PDI) molecules through a host-guest interaction, which can be visualized by microscopy using samples deposited on glass surfaces. In combination with atomic force microscopy, spectral, and polarization analyses, fluorescence imaging unveiled the inhomogeneity, packing defects, and relative spatial arrangement of PDI and NDI molecular units, which were found to affect the exciton mobility along the NDI nanofibers and the energy transfer efficiency from NDI to PDI guests. Fluorescence microspectroscopy shows that efficient energy transfer occurs from NDI nanofibers to isolated PDI molecules and their partial self-aggregates. The NDI nanofibers emit strong blue polarized emission, while the emission corresponding to PDI guest molecules is weakly polarized, indicating the local disruption of NDI chromophore-ordering upon PDI guest binding.
Collapse
Affiliation(s)
- Ramarani Sethy
- Division of Material Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| | - Arnaud Brosseau
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| | - Takuya Nakashima
- Division of Material Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tsuyoshi Kawai
- Division of Material Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Rémi Métivier
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Jangid P, Punia B, Chaudhury S. Stochastic dynamics of hairballs in single-polymer growth. Phys Chem Chem Phys 2024; 26:29749-29758. [PMID: 39432030 DOI: 10.1039/d4cp02960g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Real-time monitoring of the single-chain growth of synthetic polymers shows that their end-to-end extension during polymerization in living conditions does not increase continuously. Instead, it remains in a non-equilibrium state, exhibiting stochastic wait-and-jump events when one end of the polymer is subjected to a constant force and the other end is clamped. This wait-and-jump observation was attributed to the stochastic formation and unwinding of conformational entanglements, referred to as hairballs, which result from intrachain and non-bonded interactions within the polymer. In this work, we propose a new theoretical approach to investigate the microscopic dynamics of a single hairball formation and unravelling process during single-chain polymerisation. A discrete state stochastic approach is adopted to analyse the respective wait-and-jump events, which provides fully analytical solutions for all dynamic properties under non-equilibrium conditions. Our theory suggests that dynamic conformation fluctuations of the hairball may be responsible for the experimentally observed complex non-exponential behaviour in the waiting times. Excellent quantitative agreements with existing experimental data provide strong support for our theory. Further, using a Monte Carlo simulation approach, we analysed the correlations between the waiting time and extension of polymer in a single jump, which indicates the possibility of more complex dynamics of polymer growth.
Collapse
Affiliation(s)
- Pankaj Jangid
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Bhawakshi Punia
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| |
Collapse
|
3
|
Borges da Silva FA, Florindo JB, de Mattos AC, Costa FF, Lorand-Metze I, Metze K. Accompanying Hemoglobin Polymerization in Red Blood Cells in Patients with Sickle Cell Disease Using Fluorescence Lifetime Imaging. Int J Mol Sci 2024; 25:12290. [PMID: 39596357 PMCID: PMC11594999 DOI: 10.3390/ijms252212290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
In recent studies, it has been shown that fluorescence lifetime imaging (FLIM) may reveal intracellular structural details in unstained cytological preparations that are not revealed by standard staining procedures. The aim of our investigation was to examine whether FLIM images could reveal areas suggestive of polymerization in red blood cells (RBCs) of sickle cell disease (SCD) patients. We examined label-free blood films using auto-fluorescence FLIM images of 45 SCD patients and compared the results with those of 27 control persons without hematological disease. All control RBCs revealed homogeneous cytoplasm without any foci. Rounded non-sickled RBCs in SCD showed between zero and three small intensively fluorescent dots with higher lifetime values. In sickled RBCs, we found additionally larger irregularly shaped intensively fluorescent areas with increased FLIM values. These areas were interpreted as equivalent to polymerized hemoglobin. The rounded, non-sickled RBCs of SCD patients with homogeneous cytoplasm were not different from those of the erythrocytes of control patients in light microscopy. Yet, variables from the local binary pattern-transformed matrix of the FLIM values per pixel showed significant differences between non-sickled RBCs and those of control cells. In a linear discriminant analysis, using local binary pattern-transformed texture features (mean and entropy) of the erythrocyte cytoplasm of normal appearing cells, the final model could distinguish between SCD patients and control persons with an accuracy of 84.7% of the patients. When the classification was based on the examination of a single rounded erythrocyte, an accuracy of 68.5% was achieved. Employing the Linear Discriminant Analysis classifier method for machine learning, the accuracy was 68.1%. We believe that our study shows that FLIM is able to disclose the topography of the intracellular polymerization process of hemoglobin in sickle cell disease and that the images are compatible with the theory of the two-step nucleation. Furthermore, we think that the presented technique may be an interesting tool for the investigation of therapeutic inhibition of polymerization.
Collapse
Affiliation(s)
- Fernanda Aparecida Borges da Silva
- Departments of Pathology and Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-887, Brazil; (F.A.B.d.S.); (A.C.d.M.)
- National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABIC), State University of Campinas, Campinas 13083-970, Brazil
| | - João Batista Florindo
- Institute of Mathematics, Statistics, and Scientific Computing, State University of Campinas, Campinas 13083-888, Brazil;
| | - Amilcar Castro de Mattos
- Departments of Pathology and Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-887, Brazil; (F.A.B.d.S.); (A.C.d.M.)
- Laboratory of Pathology, Pontifical Catholic University of Campinas PUCC, Campinas 13060-904, Brazil
| | - Fernando Ferreira Costa
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-859, Brazil; (F.F.C.); (I.L.-M.)
| | - Irene Lorand-Metze
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-859, Brazil; (F.F.C.); (I.L.-M.)
| | - Konradin Metze
- Departments of Pathology and Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-887, Brazil; (F.A.B.d.S.); (A.C.d.M.)
- National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABIC), State University of Campinas, Campinas 13083-970, Brazil
| |
Collapse
|
4
|
Peacock H, Blum SA. Buildup and Consumption of Species in Emulsion Droplets during Aqueous Suzuki Coupling Correlate with Yield. J Org Chem 2024; 89:10684-10692. [PMID: 39016689 DOI: 10.1021/acs.joc.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) provides spatiotemporal resolution of the changing composition of emulsion droplets during aqueous-surfactant Suzuki coupling. In contrast to previous investigations, the present experiments characterize the full course of a catalytic chemical reaction, addressing key questions about reaction species buildup and correlating these microscale behaviors with bench-scale product yields. At low concentrations of (active) catalyst, droplet environments are stable; however, at higher concentrations, emulsion droplet environments change markedly. These changes are consistent with the buildup and consumption of reaction species inside the droplets. A combination of FLIM and bright-field imaging pinpoints limitations in catalyst solubility as controlling rate and degree of buildup of species in droplets. These solubility limitations are also identified as the cause of a reaction induction period and an origin of the rate-and-reproducibility advantage obtained by adding THF cosolvent. The subsequent mechanistic model from these data led to a bench-scale reaction optimization, wherein premixing the catalyst components bypasses the catalyst induction period, resulting in a faster reaction. The understanding generated by FLIM thus provides an early example of how visualizing changes in droplet compositions on the microscale during ongoing aqueous-organic reactions can be leveraged for enhancing efficiencies in bench-scale reactions.
Collapse
Affiliation(s)
- Hannah Peacock
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
5
|
Yang Q, Yang Z, Lu F, Ge H, Du Y, Cao D, Yuan Z, Lu C. Probing the Alcoholysis Degree of Polyvinyl Alcohol by Synergistic Coordination-Regulated Fluorescence. Anal Chem 2024; 96:4657-4664. [PMID: 38456390 DOI: 10.1021/acs.analchem.3c05831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Polyvinyl alcohol (PVA) with abundant hydroxyl groups (-OH) has been widely used for membranes, hydrogels, and films, and its function is largely affected by the alcoholysis degree. Therefore, the development of rapid and accurate methods for alcoholysis degree determination in PVAs is important. In this contribution, we have proposed a novel fluorescence-based platform for probing the alcoholysis degree of PVA by using the (E)-N-(4-methoxyphenyl)-1-(quinolin-2-yl)methanimine (QPM)-Zn2+ complex as the reporter. The mechanism study disclosed that the strong coordination between -OH and Zn2+ induced the capture of the QPM-Zn2+ complex and promoted its subsequent immobilization into the noncrystalline area. The immobilization of the QPM-Zn2+ complex restricted its molecular rotation and reduced the nonirradiative transition, thus yielding bright emissions. In addition, the practical applications of this proposed method were further validated by the accurate alcoholysis degree determination of blind PVA samples with the confirmation of the National Standard protocol. It is expected that the developed fluorescence approach in this work might become an admissive strategy for screening the alcoholysis degree of PVA.
Collapse
Affiliation(s)
- Qingxin Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiming Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengniu Lu
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hanbing Ge
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Du
- Analysis Center, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ding Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Hanada EM, Lou H, McShea PJ, Blum SA. Metal Activation Produces Different Reaction Environments for Intermediates during Oxidative Addition. Chemistry 2024; 30:e202304105. [PMID: 38109441 PMCID: PMC10932920 DOI: 10.1002/chem.202304105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/20/2023]
Abstract
Commercial zinc metal powder requires activation for consistent and reliable use as a reductant in the formation of organozinc reagents from organohalides, and for the avoidance of supplier and batch-to-batch variability. However, the impact of activation methods on the reaction environments of subsequent intermediates has been unknown. Herein, a fluorescence lifetime imaging microscopy (FLIM) method is developed to bridge this knowledge gap, by imaging and examining reaction intermediates on zinc metal that has been activated by pretreatment through different common methods (i. e., by chemical activation with TMSCl, dibromoethane, or HCl; or by mechanical activation). The group of chemical activating agents, previously thought to act similarly by removing oxide layers, are here shown to produce markedly different reaction environments experienced by subsequent oxidative-addition intermediates from organohalides - data uniquely available through FLIM's ability to detect small quantities of intermediates in situ coupled with its microenvironmental sensitivity. These different microenvironments potentially give rise to different rates of formation, subsequent solubilization, and reactivity, despite the shared "[RZnX]" molecular structure of these intermediates. This information revises models for methods development for oxidative addition to currently sluggish metals beyond zinc by establishing diverse outcomes for pretreatment activation methods that were previously considered similar.
Collapse
Affiliation(s)
- Erin M Hanada
- Chemistry Department, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Hanyun Lou
- Chemistry Department, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Patrick J McShea
- Chemistry Department, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Suzanne A Blum
- Chemistry Department, University of California, Irvine, Irvine, CA, 92697-2025, USA
| |
Collapse
|
7
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
9
|
Liu C, Si J, Cao M, Zhao P, Dai Y, Xu H. Visualizing Chain Growth of Polytelluoxane via Polymerization Induced Emission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304518. [PMID: 37715281 PMCID: PMC10625080 DOI: 10.1002/advs.202304518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Indexed: 09/17/2023]
Abstract
Visualizing polymer chain growth is always a hot topic for tailoring structure-function properties in polymer chemistry. However, current characterization methods are limited in their ability to differentiate the degree of polymerization in real-time without isolating the samples from the reaction vessel, let alone to detect insoluble polymers. Herein, a reliable relationship is established between polymer chain growth and fluorescence properties through polymerization induced emission. (TPE-C2)2 -Te is used to realize in situ oxidative polymerization, leading to the aggregation of fluorophores. The relationship between polymerization degree of growing polytelluoxane (PTeO) and fluorescence intensity is constructed, enabling real-time monitoring of the polymerization reaction. More importantly, this novel method can be further applied to the observation of the polymerization process for growing insoluble polymer via surface polymerization. Therefore, the development of visualization technology will open a new avenue for visualizing polymer chain growth in real-time, regardless of polymer solubility.
Collapse
Affiliation(s)
- Chengfei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
- Tsinghua‐Peking Joint Center for Life SciencesBeijing100084China
| | - Jinyan Si
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
| | - Muqing Cao
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
| | - Peng Zhao
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yiheng Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
10
|
Peacock H, Blum SA. Surfactant Micellar and Vesicle Microenvironments and Structures under Synthetic Organic Conditions. J Am Chem Soc 2023; 145:7648-7658. [PMID: 36951303 PMCID: PMC10079647 DOI: 10.1021/jacs.3c01574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) reveals vesicle sizes, structures, microenvironments, reagent partitioning, and system evolution with two chemical reactions for widely used surfactant-water systems under conditions relevant to organic synthesis, including during steps of Negishi cross-coupling reactions. In contrast to previous investigations, the present experiments characterize surfactant systems with representative organohalide substrates at high concentrations (0.5 M) that are reflective of the preparative-scale organic reactions performed and reported in water. In the presence of representative organic substrates, 2-iodoethylbenzene and 2-bromo-6-methoxypyridine, micelles swell into emulsion droplets that are up to 20 μm in diameter, which is 3-4 orders of magnitude larger than previously measured in the absence of an organic substrate (5-200 nm). The partitioning of reagents in these systems is imaged through FLIM─demonstrated here with nonpolar, amphiphilic, organic, basic, and oxidative-addition reactive compounds, a reactive zinc metal powder, and a palladium catalyst. FLIM characterizes the chemical species and/or provides microenvironment information inside micelles and vesicles. These data show that surfactants cause surfactant-dictated microenvironments inside smaller micelles (<200 nm) but that addition of a representative organic substrate produces internal microenvironments dictated primarily by the substrate rather than by the surfactant, concurrent with swelling. Addition of a palladium catalyst causes the internal environments to differ between vesicles─information that is not available through nor predicted from prior analytical techniques. Together, these data provide immediately actionable information for revising reaction models of surfactant-water systems that underpin the development of sustainable organic chemistry in water.
Collapse
Affiliation(s)
- Hannah Peacock
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
11
|
Nabihah Mohd Yusof Chan N, Idris A, Hazrin Zainal Abidin Z, Anuar Tajuddin H. White light emission from coumarin and rhodamine derivatives based on RGB multicomponent system. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|