1
|
Hirani Z, Schweitzer NM, Vitaku E, Dichtel WR. A Phenazine-Based Two-Dimensional Covalent Organic Framework for Photochemical CO 2 Reduction with Increased Selectivity for Two-Carbon Products. Angew Chem Int Ed Engl 2025:e202502799. [PMID: 40059079 DOI: 10.1002/anie.202502799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
The reduction of carbon dioxide (CO₂) into valuable products will contribute to sustainable carbon use. Here we report the photocatalytic reduction of CO₂ to carbon monoxide, formate, and oxalate ions using a redox-active phenazine-based 2D covalent organic framework (Phen-COF) and its phenazine monomer. Under similar irradiation conditions, Phen-COF produced 2.9 times more CO, 11 times more formate, and 13 times more oxalate compared to equimolar amounts of the monomeric phenazine, demonstrating that the COF architecture enhances catalytic performance (TOFCOF: 10-7 s-1 CO, 10-8 s-1 formate, and 10-11 s-1 oxalate). Structural analysis, including X-ray diffraction and N₂ porosimetry, confirmed the COF's long-range order and porosity. Mechanistic studies suggest a sequential formate-to-oxalate pathway, with CO and formate acting as intermediates. These results demonstrate the potential of the COF architecture to improve the performance of metal-free, redox-active aromatic systems such as phenazines to facilitate efficient and selective CO₂ conversion under mild conditions.
Collapse
Affiliation(s)
- Zoheb Hirani
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Neil M Schweitzer
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Edon Vitaku
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
He Y, Huang Y, Ye YX, Deng Y, Yang X, Ouyang G. Initiating photocatalytic degradation of organic pollutants under ultra-low light intensity via oxygen-centered organic radicals. Chem Sci 2025; 16:3964-3977. [PMID: 39898306 PMCID: PMC11783092 DOI: 10.1039/d4sc06339b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/15/2024] [Indexed: 02/04/2025] Open
Abstract
Photocatalysis is a promising method for in situ water pollution remediation but faces challenges due to the limited natural light intensity. Herein, we achieved highly-efficient photocatalytic removal of organic pollutants even under ultra-low light intensities of only 0.1 mW cm-2. This was accomplished by developing and effectively stabilizing novel reactive species, oxygen-centered organic radicals (OCORs), which have an impressive half-life of up to seven minutes in water. With lifetimes that are 8 to 11 orders of magnitude longer than for traditional transient radicals, OCORs can effectively wait for pollutants to diffuse, enabling them to remove organic pollutants through polymerization and degradation pathways. The mechanism behind the stability of OCORs lies in the enhanced electron-withdrawing ability of the electron acceptor and the extended conjugation of the catalyst, which effectively prevent back electron transfer. This study provides a theoretical foundation for practical applications of photochemistry in pollution remediation.
Collapse
Affiliation(s)
- Yingge He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University Guangzhou China
| | - Yuyan Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University Guangzhou China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University Zhuhai China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai China
| | - Yanchun Deng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University Guangzhou China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University Guangzhou China
| | - Gangfeng Ouyang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University Guangzhou China
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University Zhuhai China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai China
| |
Collapse
|
3
|
Zhu D, Li L, Ji Y, Wang P. Aqueous colloid flow batteries with nano Prussian blue. J Colloid Interface Sci 2025; 678:88-97. [PMID: 39182389 DOI: 10.1016/j.jcis.2024.08.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Flow battery is a safe and scalable energy storage technology in effectively utilizing clean power and mitigating carbon emissions from fossil fuel consumption. In the present work, we demonstrate an aqueous colloid flow battery (ACFB) with well-dispersed colloids based on nano-sized Prussian blue (PB) cubes, aiming at expanding the chosen area of various nano redox materials and lowering the cost of chemicals. Taking advantage of the two redox pairs of PB, the developed all-PB cell employing a low-cost dialysis membrane with the synthesized PB on both sides displays an open-circuit voltage (OCV) of 0.74 V. Moreover, when paired with an organic tetra pyridine macrocycle the cell with PB as positive electrolyte exhibits an OCV of 1.33 V and a capacity fade rate of 0.039 %/cycle (0.8 %/day). Redox-active colloids exhibit enduring physicochemical stability, with no evident structural or morphological changes after extensive cycling, highlighting their potential for cost-effective and reliable ACFB energy storage.
Collapse
Affiliation(s)
- Dongdong Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lu Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yunlong Ji
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Pan Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
4
|
Tang G, Wu W, Liu Y, Peng K, Zuo P, Yang Z, Xu T. Adjusting Hirshfeld charge of TEMPO catholytes for stable all-organic aqueous redox flow batteries. Nat Commun 2025; 16:47. [PMID: 39747834 PMCID: PMC11695718 DOI: 10.1038/s41467-024-55244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) derivatives are typical catholytes in aqueous organic redox flow batteries (AORFBs), but reported lifetime of them is limited. We find that the increase of Hirshfeld charge decreases the Gibbs free energy change (ΔG) values of side reactions of TEMPO, a near-linear relationship, and then exacerbates their degradation. Here we predict and synthesize a TEMPO derivative, namely TPP-TEMPO, by analyzing the Hirshfeld charge. TPP-TEMPO, with the smallest Hirshfeld charge and highest ΔG, is an order of magnitude more stable than TMA-TEMPO (N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride, a control with the largest Hirshfeld charge and lowest ΔG). We further elaborate on their decomposition pathways, identify byproducts, and mitigate degradation by supporting electrolyte engineering. Finally, a TPP-TEMPO/BTMAP-Vi (1,1'-bis[3-(trimethylammonio)propyl]-4,4'-bipyridinium tetrachloride) cell achieves a capacity density of ~12 Ah L-1 and a low capacity fade rate of 0.0018% per cycle (or 0.0067% per hour).
Collapse
Affiliation(s)
- Gonggen Tang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenyi Wu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Yahua Liu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Kang Peng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China.
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Ge G, Li F, Yang M, Zhao Z, Hou G, Zhang C, Li X. In Situ Molecular Reconfiguration of Pyrene Redox-Active Molecules for High-Performance Aqueous Organic Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412197. [PMID: 39428902 DOI: 10.1002/adma.202412197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Indexed: 10/22/2024]
Abstract
Aqueous organic flow batteries (AOFBs) hold great potential for large-scale energy storage, however, scalable, green, and economical synthetic methods for stable organic redox-active molecules (ORAMs) are still required for their practical applications. Herein, pyrene-based ORAMs are obtained via an in situ organic electrolysis strategy in a flow cell. It is revealed that the water attacking pyrenes restructured molecules to produce a variety of isomers and dimers during the electrolysis, which can be modulated by regulating the local electron cloud density and steric hindrance of pyrene precursors. As a result, the molecularly reconfigured pyrene-based catholytes, even without any further purification, achieved a high electrolyte utilization of ≈96% and volumetric capacity above 50 Ah L-1. Inspiringly, remarkable cell stability with almost no capacity decay for ≈70 days is achieved, benefiting from the robust aromatic structure of the pyrene cores. The insights into the in situ electrosynthesis of pyrene-based ORAMs provided in the work will provide guidance for designing ultra-stable ORAMs for AOFB applications.
Collapse
Affiliation(s)
- Guangxu Ge
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fan Li
- University of Chinese Academy of Sciences, Beijing, 100039, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Min Yang
- University of Chinese Academy of Sciences, Beijing, 100039, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Ziming Zhao
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Changkun Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
6
|
Shi HX, Bao HW, Wu GY. Solvation controlled excited-state dynamics in a donor-acceptor phenazine-imidazole derivative. RSC Adv 2024; 14:17071-17076. [PMID: 38808230 PMCID: PMC11130646 DOI: 10.1039/d4ra02417f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
In the past few decades, significant efforts have been devoted to developing phenazine derivatives in various fields such as medicine, pesticides, dyes, and conductive materials owing to their highly Stokes-shifted fluorescence and distinctive photophysical properties. The modulation of the surrounding environment can effectively influence the luminescent behavior of phenazine derivatives, prompting us to investigate the solvent effect on the excited state dynamics. Herein, we present the solvent controlled excited state dynamics of a novel triphenylamine-based phenazine-imidazole molecule (TPAIP) through steady-state spectra and femtosecond transient absorption spectra. The fluorescence emission spectrum exhibited a redshift with increasing solvent polarity, indicating the existence of a charge transfer state. Furthermore, by tracking the femtosecond transient absorption spectra of TPAIP, we found that the nature of the relaxed S1 state was strongly influenced by the solvent polarity: intersystem crossing character appears in apolar solvent, whereas intramolecular charge transfer character occurs in polar solvent because of solvation. These findings provide significant theoretical insights into the impact of solvents on the excited state dynamics within phenazine derivatives. This understanding supports diverse applications ranging from advanced biological probe design to photocatalysis and pharmaceutical research.
Collapse
Affiliation(s)
- Hai-Xiong Shi
- School of Chemical Engineering, Lanzhou University of Arts and Science Lanzhou Gansu 730000 China
| | - Hong-Wei Bao
- School of Chemical Engineering, Lanzhou University of Arts and Science Lanzhou Gansu 730000 China
| | - Gui-Yuan Wu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| |
Collapse
|
7
|
Liu Y, Zhang P, Wu Z, Wei J, Ding G, Song X, Ma J, Wang W, Jin Z. Screening Ultra-Stable (Phenazine)dioxyalkanocic Acids with Varied Water-Solubilizing Chain Lengths for High-Capacity Aqueous Redox Flow Batteries. J Am Chem Soc 2024; 146:3293-3302. [PMID: 38277694 DOI: 10.1021/jacs.3c11887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Aqueous redox flow batteries (ARFBs) hold great potential for large-scale energy storage. Recently, research on aqueous flow batteries has shifted toward water-soluble organic molecules with redox capabilities to reduce the use of mineral resources. The chemical and electrochemical stabilities of organic compounds are heavily influenced by their functional groups and reaction sites. In this study, we present a low-cost synthesis of the O-alkyl-carboxylate-functionalized derivatives of 2,3-dihydroxyphenazine, namely, phenazine-(2,3-diyl) dioxy dibutyric acid (DBEP) and phenazine-(2,3-diyl)dioxy diacetic acid (DAEP), which serve as negolytes and exhibit good reversibility and high redox kinetics. The evidence is provided to clarify the capacity degradation mechanisms of DAEP and DBEP by a series of comprehensive characterizations. Similar to anthraquinones functionalized with alkyl chains, the main degradation mechanism of DAEP modified with acetic acid is due to side chain loss. Longer side chains are more stable and can withstand long-term electrochemical reactions. DBEP modified with butyric acid exhibits superior chemical and electrochemical stability. Our results demonstrate that rational molecular design and suitable membranes, such as the alkaline ARFBs based on DBEP negolyte, potassium ferrocyanide (K4Fe(CN)6) posolyte, and custom sulfonated poly(ether ether ketone) membrane, can deliver a high open-circuit voltage of 1.17 V and high capacity retention of 99.997% per cycle for over 1000 cycles at 50 mA cm-2. This study highlights the importance of not only considering the modification position of the molecules but also focusing on the influence of various side chains on the redox core's stability toward sustainable grid-scale energy storage applications.
Collapse
Affiliation(s)
- Yuzhu Liu
- Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Pengbo Zhang
- Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Zuoao Wu
- Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Jie Wei
- Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Guochun Ding
- Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Xinmei Song
- Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Jing Ma
- Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Wei Wang
- Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Zhong Jin
- Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| |
Collapse
|
8
|
Hasan F, Gillen JH, Jayaweera AT, McDearmon WD, Winter AH, Bejger CM. Simple Air-Stable [3]Radialene Anion Radicals as Environmentally Switchable Catholytes in Water. Chemistry 2024; 30:e202302829. [PMID: 37968900 DOI: 10.1002/chem.202302829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
The hexacyano[3]radialene radical anion (1) is an attractive catholyte material for use in redox flow battery (RFB) applications. The substitution of cyano groups with ester moieties enhances solubility while maintaining redox reversibility and favorable redox potentials. Here we show that these ester-functionalized, hexasubstituted [3]radialene radical anions dimerize reversibly in water. The dimerization mode is dependent on the substitution pattern and can be switched in solution. Stimuli-responsive behavior is achieved by exploiting an unprecedented tristate switching mechanism, wherein the radical can be toggled between the free radical, a π-dimer, and a σ-dimer-each with dramatically different optical, magnetic, and redox properties-by changing the solvent environment, temperature, or salinity. The symmetric, triester-tricyano[3]radialene (3) forms a solvent-responsive, σ-dimer in water that converts to the radical anion with the addition of organic solvents or to a π-dimer in brine solutions. Diester-tetracyano[3]radialene (2) exists primarily as a π-dimer in aqueous solutions and a radical anion in organic solvents. The dimerization behavior of both 2 and 3 is temperature dependent in methanol solutions. Dimerization equilibrium has a direct impact on catholyte stability during galvanostatic charge-discharge cycling in static H-cells. Specifically, conditions that favor the free radical anion or π-dimer exhibit significantly enhanced cycling profiles.
Collapse
Affiliation(s)
- Fuead Hasan
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jonathan H Gillen
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | - William D McDearmon
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, IA 50010, USA
| | - Christopher M Bejger
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
9
|
Wu MX, Hong QY, Li M, Jiang WL, Huang B, Lu S, Wang H, Yang HB, Zhao XL, Shi X. Self-assembly of conformation-adaptive dihydrophenazine-based coordination cages. Chem Commun (Camb) 2024; 60:1184-1187. [PMID: 38193861 DOI: 10.1039/d3cc04864k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this study, we designed and synthesized three conformation-adaptive Pd2L4- and Pd3L6-type coordination cages based on three dihydrophenazine-based ligands with different lengths. Interestingly, the shorter ligands L1 and L2 self-assembled into Pd2L4-type coordination cages while the longer ligand L3 formed Pd3L6-type one, mainly driven by the anion template effect. All coordination cages were confirmed through single-crystal X-ray diffraction, and their structural conformations underwent great changes compared with those of their corresponding ligands. Moreover, the conformational changes also significantly affected their photophysical and electrochemical properties which were distinct from their parent ligands.
Collapse
Affiliation(s)
- Meng-Xiang Wu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Qiong-Yan Hong
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Minghui Li
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Wei-Ling Jiang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Bin Huang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Hai-Bo Yang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Xiao-Li Zhao
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Xueliang Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| |
Collapse
|
10
|
Kong T, Li J, Wang W, Zhou X, Xie Y, Ma J, Li X, Wang Y. Enabling Long-Life Aqueous Organic Redox Flow Batteries with a Highly Stable, Low Redox Potential Phenazine Anolyte. ACS APPLIED MATERIALS & INTERFACES 2024; 16:752-760. [PMID: 38132704 DOI: 10.1021/acsami.3c15238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Aqueous organic redox flow batteries (AORFBs) are considered a promising energy storage technology due to the sustainability and designability of organic active molecules. Despite this, most of AORFBs suffer from limited stability and low voltage because of the chemical instability and high redox potential of organic molecules in anolyte. Herein, we propose a new phenazine derivative, 4,4'-(phenazine-2,3-diylbis(oxy))dibutyric acid (2,3-O-DBAP), as a water-soluble and chemically stable anodic active molecules. By combining calculations and experiments, we demonstrate that 2,3-O-DBAP exhibits a higher solubility, a lower redox potential (-0.699 V vs SHE), and greater chemical stability than other O-DBAP isomers. Then, we demonstrate a long-lasting flow cell with an average discharge voltage of 1.12 V, a low fade rate of 0.0127%, and a lifespan of 62 days at pH 14 using 2,3-O-DBAP paired with ferri/ferrocyanide. The negligible self-discharge behavior also verifies the high stability of 2,3-O-DBAP. These results highlight the importance of molecular engineering for AORFBs.
Collapse
Affiliation(s)
- Taoyi Kong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Junjie Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xing Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Yihua Xie
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Zhu F, Guo W, Fu Y. Functional materials for aqueous redox flow batteries: merits and applications. Chem Soc Rev 2023; 52:8410-8446. [PMID: 37947236 DOI: 10.1039/d3cs00703k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Redox flow batteries (RFBs) are promising electrochemical energy storage systems, offering vast potential for large-scale applications. Their unique configuration allows energy and power to be decoupled, making them highly scalable and flexible in design. Aqueous RFBs stand out as the most promising technologies, primarily due to their inexpensive supporting electrolytes and high safety. For aqueous RFBs, there has been a skyrocketing increase in studies focusing on the development of advanced functional materials that offer exceptional merits. They include redox-active materials with high solubility and stability, electrodes with excellent mechanical and chemical stability, and membranes with high ion selectivity and conductivity. This review summarizes the types of aqueous RFBs currently studied, providing an outline of the merits needed for functional materials from a practical perspective. We discuss design principles for redox-active candidates that can exhibit excellent performance, ranging from inorganic to organic active materials, and summarize the development of and need for electrode and membrane materials. Additionally, we analyze the mechanisms that cause battery performance decay from intrinsic features to external influences. We also describe current research priorities and development trends, concluding with a summary of future development directions for functional materials with valuable insights for practical applications.
Collapse
Affiliation(s)
- Fulong Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
12
|
Liu X, Li T, Zhang C, Li X. Benzidine Derivatives: A Class of High Redox Potential Molecules for Aqueous Organic Flow Batteries. Angew Chem Int Ed Engl 2023; 62:e202307796. [PMID: 37389543 DOI: 10.1002/anie.202307796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
The development of water-soluble redox-active molecules with high potentials is one of the effective ways to enhance the energy density of aqueous organic flow batteries (AOFBs). Herein, a series of promising N-substituted benzidine analogues as water-soluble catholyte candidates with controllable redox potentials (0.78-1.01 V vs. standard hydrogen electrode (SHE)) were obtained by the molecular engineering of aqueous irreversible benzidines. Theoretical calculations reveal that the redox potentials of these benzidine derivatives in acidic solution are determined by their electronic structure and alkalinity. Among these benzidine derivatives, N,N,N',N'-tetraethylbenzidine(TEB) shows both high redox potential (0.82 V vs. SHE) and good solubility (1.1 M). Pairing with H4 [Si(W3 O10 )4 ] anolyte, the cell displayed discharge capacity retention of 99.4 % per cycle and a high coulombic efficiency (CE) of ∼100 % over 1200 cycles. The stable discharge capacity of 41.8 Ah L-1 was achieved at the 1.0 M TEB catholyte with a CE of 97.2 % and energy efficiency (EE) of 91.2 %, demonstrating that N-substituted benzidines could be promising for AOFBs.
Collapse
Affiliation(s)
- Xianghui Liu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tianyu Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Changkun Zhang
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
13
|
Yang G, Zhu Y, Hao Z, Lu Y, Zhao Q, Zhang K, Chen J. Organic Electroactive Materials for Aqueous Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301898. [PMID: 37158492 DOI: 10.1002/adma.202301898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Organic electroactive materials take advantage of potentially sustainable production and structural tunability compared to present commercial inorganic materials. Unfortunately, traditional redox flow batteries based on toxic redox-active metal ions have certain deficiencies in resource utilization and environmental protection. In comparison, organic electroactive materials in aqueous redox flow batteries (ARFBs) have received extensive attention in recent years for low-cost and sustainable energy storage systems due to their inherent safety. This review aims to provide the recent progress in organic electroactive materials for ARFBs. The main reaction types of organic electroactive materials are classified in ARFBs to provide an overview of how to regulate their solubility, potential, stability, and viscosity. Then, the organic anolyte and catholyte in ARFBs are summarized according to the types of quinones, viologens, nitroxide radicals, hydroquinones, etc, and how to increase the solubility by designing various functional groups is emphasized. The research advances are presented next in the characterization of organic electroactive materials for ARFBs. Future efforts are finally suggested to focus on building neutral ARFBs, designing advanced electroactive materials through molecular engineering, and resolving problems of commercial applications.
Collapse
Affiliation(s)
- Gaojing Yang
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yaxun Zhu
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhimeng Hao
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Lu
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qing Zhao
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kai Zhang
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|