1
|
Dong Y, Ye H, Wang B, Ma D, Kang X, Liang W, Cai X, Liu S, Jiang C, Du W, Zhang H, Sun H, Xi Z, Yi L. Intramolecular Thiol-Promoted Decomposition of Cysteine Ester (ITPDC): A General Platform for Controllable Release of Reactive Sulfur Species. Angew Chem Int Ed Engl 2025:e202422087. [PMID: 40241606 DOI: 10.1002/anie.202422087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/09/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Endogenously generated reactive sulfur species (RSS) play critical roles in various physiological processes. RSS donors can enhance our understanding of RSS chemical biology and open new avenues for treating RSS-associated diseases. Nevertheless, general strategies for the controllable release of distinct RSS remain lacking. Herein, we present the first general platform for controllable release of RSS with sulfur oxidation states ranging from -2 to +4, based on the intramolecular thiol-promoted decomposition of cysteine ester (ITPDC). We first rationally designed ITPDC-based hydrogen sulfide (H2S) donors that avoid electrophilic byproducts and exhibit high H2S release efficiencies (>50%). Mechanistic investigations and density functional theory calculations elucidated the detailed pathways of pH-controllable H2S release from ITPDC, and computational studies also predicted other H2S-related RSS release from the ITPDC-based motifs. Importantly, we developed a series of ITPDC-based donors capable of releasing various RSS, including persulfide, hydrogen persulfide, sulfenic acid, sulfinic acid, and sulfur dioxide (SO2). Moreover, fluorescent imaging demonstrated the successful cellular delivery of H2S, persulfide, and SO2 from these donors, and the ITPDC-based motif was employed to create a light-triggered donor. We anticipate that these innovative chemistries will provide valuable tools for studying sulfur biology and for developing new RSS donors and bio-orthogonal cleavage techniques.
Collapse
Affiliation(s)
- Yalun Dong
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Baifan Wang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P.R. China
| | - Dejun Ma
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P.R. China
| | - Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Wenfang Liang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xuekang Cai
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Shanshan Liu
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| | - Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Wenhao Du
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, P.R. China
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| | - Zhen Xi
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P.R. China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
2
|
Yoshimura M, Sasayama R, Kajiwara T, Mori C, Nakasone Y, Inose T. Remote Silyl Groups Enhance Hydrolytic Stability and Photocleavage Efficiency in Carbamates for Protein Release. Angew Chem Int Ed Engl 2025:e202502376. [PMID: 40222957 DOI: 10.1002/anie.202502376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
Photocleavable molecules are valuable tools for biological studies, enabling spatiotemporal activation of molecular functions within cellular environments. In particular, coumarin-based photolytic molecules are useful because of their ability to flexibly tune the wavelength of photostimulation through their structural modifications. Ideal photocleavable molecular tools require hydrolytic stability and selective susceptibility to photo stimuli. However, conventional coumarin-based molecules have not simultaneously achieved both highly efficient photocleavage and hydrolysis resistance. Herein, we proposed a novel molecular design concept that introduces a silyl group into coumarin-based molecules at a position remote from the photolabile bond, creating an ideal photocleavable molecule for chemical biology tools. The established orbital effect of the remotely introduced silyl group improves the photolysis efficiency of coumarin-based molecules, while its bulkiness substantially enhances their hydrolytic stability in aqueous environments and under enzymatic conditions. Furthermore, this improvement in molecular functionality contributes to the development of high-performance protein-release biomaterials.
Collapse
Affiliation(s)
- Masahiko Yoshimura
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryuto Sasayama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takashi Kajiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Chihiro Mori
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tomoko Inose
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- JST PRESTO, Saitama, 332-0012, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
3
|
Sun R, Huang Y, Feng H, Zhao N, Wan W, Shen D, Zhong B, Zhang Y, Zhang X, Zhao Q, Zhang L, Liu Y. 1000 fold Ultra-Photosensitized Fluorescent Protein Mimics Toward Photocatalytic Proximity Labeling and Proteomic Profiling Functions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413063. [PMID: 39985251 PMCID: PMC12005797 DOI: 10.1002/advs.202413063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/07/2025] [Indexed: 02/24/2025]
Abstract
Photosensitizing fluorescent proteins (FP) (e.g. KillerRed) have been shown not capable of photo-catalytic protein proximity labeling for downstream proteomic profiling applications. To acquire such a function, FP chromophores are engineered in a 12 × 12 combinatorial matrix of synthetic analoges, achieving up to 1000 fold enhancement of reactive oxygen species (ROS) production compared to the natural FPs. FP chromophores are shown with larger dipole moments exhibit higher ROS yield toward protein labeling. By conjugating the ultra-photosensitized FP chromophore to HaloTag (namely upsFP tag), its photo-catalytic protein proximity labeling function is demonstrated using nucleophilic amino substrates. Through photochemical characterizations, theoretical calculation, and tandem mass spectrometry, a radical-mediated labeling mechanism is revealed with expanded reactivity toward diverse protein residues via a type I photosensitization pathway. Finally, a proteomic profiling application is showcased using the upsFP tag to resolve the dynamic interactome variations upon TAR DNA-binding protein 43 (TDP43) phase separation and suborganellar translocation. Together, this work demonstrates three orders of magnitude ultra-photosensitization of fluorescent protein chromophore enables photocatalytic protein proximity labeling and profiling functions that are impractical for natural fluorescent proteins.
Collapse
Affiliation(s)
- Rui Sun
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanan Huang
- Department of Chemistry and Westlake Laboratory of Life Science and BiomedicineWestlake University600 Dunyu RoadHangzhou310030China
| | - Huan Feng
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Nan Zhao
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Wang Wan
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Di Shen
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Bowen Zhong
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Yukui Zhang
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Xin Zhang
- Department of Chemistry and Westlake Laboratory of Life Science and BiomedicineWestlake University600 Dunyu RoadHangzhou310030China
| | - Qun Zhao
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Lihua Zhang
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Yu Liu
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| |
Collapse
|
4
|
Ma T, Gao H, Wu J, Zhao J, Chang B, Zhang Z, Zhang S, Zhang B, Fang J. Diselenides as novel effective fluorescence quenchers to construct a two-photon fluorescent probe for thiols in a mouse stroke model. Chem Commun (Camb) 2025; 61:1910-1913. [PMID: 39774747 DOI: 10.1039/d4cc06286h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A fluorescence quenching mechanism using linear diselenides was proposed for the first time through a combination of intramolecular charge transfer (ICT) and Förster resonance energy transfer (FRET). Herein, we synthesized and screened a two-photon fluorescent probe AFC-SeSe, demonstrating a remarkable 300-fold increase in response to glutathione (GSH). Additionally, AFC-SeSe enabled real-time observation of increased thiol levels following treatment within a short timeframe in a mouse model of stroke.
Collapse
Affiliation(s)
- Tao Ma
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jun Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhibin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
5
|
Bazylevich A, Miller A, Tkachenko I, Merlani M, Patsenker L, Gellerman G, Lubin BCR. Novel Cyclic Peptide-Drug Conjugate P6-SN38 Toward Targeted Treatment of EGFR Overexpressed Non-Small Cell Lung Cancer. Pharmaceutics 2024; 16:1613. [PMID: 39771591 PMCID: PMC11676734 DOI: 10.3390/pharmaceutics16121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Here, we report on the synthesis and biological evaluation of a novel peptide-drug conjugate, P6-SN38, which consists of the EGFR-specific short cyclic peptide, P6, and the Topo I inhibitor SN38, which is a bioactive metabolite of the anticancer drug irinotecan. Methods: SN38 is attached to the peptide at position 20 of the E ring's tertiary hydroxyl group via a mono-succinate linker. Results: The developed peptide-drug conjugate (PDC) exhibited sub-micromolar anticancer activity on EGFR-positive (EGFR+) cell lines but no effect on EGFR-negative (EGFR-) cells. In vivo studies have shown that this PDC specifically accumulates in EGFR+ non-small cell lung cancer (NSCLC) xenografts and presents superior anticancer activity compared to the EGFR-specific antibody cetuximab (ErbituxTM) and free SN38. The 10 mg/kg dose of P6-SN38 in a side-by-side EGFR+/EGFR- xenograft shows eradication of the EGFR+ tumor with good tolerance, but no inhibition of tumor growth of the EGFR- counterpart. Conclusions: The PDC examined in this study was proven to be highly efficient for NSCLC, broadening its utilization for targeted cancer therapy in EGFR overexpressed cancers.
Collapse
Affiliation(s)
- Andrii Bazylevich
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.B.); (I.T.); (L.P.); (G.G.)
| | - Ayala Miller
- Agriculture and Oenology Department, Eastern Regional R&D Center, Ariel 40700, Israel
| | - Iryna Tkachenko
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.B.); (I.T.); (L.P.); (G.G.)
| | - Maia Merlani
- I. Kutateladze Institute of Pharmacochemistry, Tbilisi State Medical University (TSMU), Vashlijvari 0159, Georgia
| | - Leonid Patsenker
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.B.); (I.T.); (L.P.); (G.G.)
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.B.); (I.T.); (L.P.); (G.G.)
| | - Bat Chen R. Lubin
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 40700, Israel
- Agriculture and Oenology Department, Eastern Regional R&D Center, Ariel 40700, Israel
| |
Collapse
|
6
|
Lv M, Zheng Y, Dai X, Zhao J, Hu G, Ren M, Shen Z, Su Z, Wu C, Liu HK, Xue X, Mao ZW. Ruthenium(ii)-Arene Complex Triggers Immunogenic Ferroptosis for Reversing Drug Resistance. J Med Chem 2024; 67:20156-20171. [PMID: 39312756 DOI: 10.1021/acs.jmedchem.4c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chemoresistance remains an arduous challenge in oncology, but ferroptosis shows potential for overcoming it by stimulating the immune system. Herein, a novel high-performance ruthenium(II)-based arene complex [Ru(η6-p-cym)(BTBpy)Cl] (RuBTB) is developed for ferroptosis-enhanced antitumor immunity and drug resistance reversal via glutathione (GSH) metabolism imbalance. RuBTB shows significantly enhanced antiproliferation activity against cisplatin (CDDP)-resistant lung cancer cells (A549R), with 26.35-fold better anticancer effects than CDDP. Immunogenic ferroptosis is induced by GSH depletion/glutathione peroxidase 4 (GPX4) inactivation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in RuBTB-treated cells. Mechanism studies indicate that RuBTB regulates ferroptosis and immune-related pathways, coordinating with GSH metabolism-mediated glutathione S-transferase (GST) inhibition to reverse drug resistance in platinum-combined therapy. Tumor vaccination experiments demonstrate the intensified antitumor effects endowed by highly immunogenic ferroptosis in vivo. This study provides the first example of a metal-arene complex for achieving satisfactory ferroptosis therapeutic effects with efficient immunogenicity to overcome drug resistance in metal-based immunochemotherapy.
Collapse
Affiliation(s)
- Mengdi Lv
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, PR China
| | - Xiangyu Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jingyue Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Guojing Hu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Meng Ren
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhengqi Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhi Su
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Chao Wu
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Hong-Ke Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xuling Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, PR China
| |
Collapse
|
7
|
He Y, Xu Z, Yan Y, Zhang X, He Y, Luo Q, Wang D, Gao D. A universal nanoreactor triggering butterfly effect for encouraging Fenton/Fenton-like reactions and chemodynamic therapy. J Colloid Interface Sci 2024; 670:297-310. [PMID: 38763026 DOI: 10.1016/j.jcis.2024.05.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Fenton/Fenton-like reaction induced chemical dynamic therapy (CDT) has been widely recognized in tumor therapy. Due to the low efficiency of conversion from high-valent metal ions (M(n+1)+) to low-valent ions (Mn+) in the Fenton/Fenton-like catalytic process, enhancing the conversion efficiency safely and effectively would create a great opportunity for the clinical application of CDT. In the study, a universal nanoreactor (NR) consisting of liposome (Lip), tumor cell membrane (CM), and bis(2,4,5-trichloro-6-carboxyphenyl) oxalate (CPPO) is developed to tackle this challenge. The CPPO was first discovered to decompose under weak acidity and H2O2 conditions to generate carboxylic acids (R'COOH) and alcohols (R'OH) with reducibility, which will reduce M(n+1)+ to Mn+ and magnify the effect of CDT. Furthermore, glucose oxidase (GOx) was introduced to decompose glucose in tumor and generate H2O2 and glucose acid, which promote the degradation of CPPO, further strengthening the efficiency of CDT, leading to a butterfly effect. This demonstrated that the butterfly effect triggered by NR and GOx encourages Fenton/Fenton-like reactions of Fe3O4 and MoS2, thereby enhancing the tumor inhibition effect. The strategy of combining GOx and CPPO to strengthen the Fenton/Fenton-like reaction is a universal strategy, which provides a new and interesting perspective for CPPO in the application of CDT, reflecting the exquisite integration of Fenton chemistry and catalytic medicine.
Collapse
Affiliation(s)
- Yaqian He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Zichuang Xu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yaqian Yan
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Qingzhi Luo
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China.
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
8
|
Miao Y, Yu ZQ, Xu S, Yan M. Quinone Methide Based Self-Immobilizing Molecular Fluorescent Probes for In Situ Imaging of Enzymes. Chem Asian J 2024; 19:e202400189. [PMID: 38514393 DOI: 10.1002/asia.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Enzymes play important roles not only in normal physiological processes but in the development of many diseases. In situ imaging of enzymes with high-resolution in living systems would helpful for clinical diagnosis and treatment. However, many molecular fluorescent probes suffer from the drawback of diffusing away from the reaction site of enzymes even out of the cells, losing the in situ information and resulting in poor imaging resolution. Quinone methide (QM) based self-immobilizing probes allow the fluorescent signal to be immobilized near the target for an extended period without deactivating the target enzymes, ensuring that it will provide amplified signals and in situ information of the target with high resolution. In this review, we summarized the recent progress of QM-based self-immobilizing probes including their design strategies, working mechanisms, classifications and applications in in situ enzyme imaging. This review calls for the development of more activatable QM-based probe with the advantages of high stability in the absence of the target but very high labeling efficiency after activation.
Collapse
Affiliation(s)
- Yeru Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhen-Qing Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Shuai Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
9
|
Townsend KM, Prescher JA. Recent advances in bioluminescent probes for neurobiology. NEUROPHOTONICS 2024; 11:024204. [PMID: 38390217 PMCID: PMC10883388 DOI: 10.1117/1.nph.11.2.024204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Bioluminescence is a popular modality for imaging in living organisms. The platform relies on enzymatically (luciferase) generated light via the oxidation of small molecule luciferins. Since no external light is needed for photon production, there are no concerns with background autofluorescence or photobleaching over time-features that have historically limited other optical readouts. Bioluminescence is thus routinely used for longitudinal tracking across whole animals. Applications in the brain, though, have been more challenging due to a lack of sufficiently bioavailable, bright, and easily multiplexed probes. Recent years have seen the development of designer luciferase and luciferin pairs that address these issues, providing more sensitive and real-time readouts of biochemical features relevant to neurobiology. This review highlights many of the advances in bioluminescent probe design, with a focus on the small molecule light emitter, the luciferin. Specific efforts to improve luciferin pharmacokinetics and tissue-penetrant emission are covered, in addition to applications that such probes have enabled. The continued development of improved bioluminescent probes will aid in illuminating critical neurochemical processes in the brain.
Collapse
Affiliation(s)
- Katherine M Townsend
- University of California, Irvine, Department of Chemistry, Irvine, California, United States
| | - Jennifer A Prescher
- University of California, Irvine, Department of Chemistry, Irvine, California, United States
- University of California, Irvine, Department of Molecular Biology and Biochemistry, Irvine, California, United States
- University of California, Irvine, Department of Pharmaceutical Sciences, Irvine, California, United States
| |
Collapse
|
10
|
Ran C, Pu K. Molecularly generated light and its biomedical applications. Angew Chem Int Ed Engl 2024; 63:e202314468. [PMID: 37955419 DOI: 10.1002/anie.202314468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Molecularly generated light, referred to here as "molecular light", mainly includes bioluminescence, chemiluminescence, and Cerenkov luminescence. Molecular light possesses unique dual features of being both a molecule and a source of light. Its molecular nature enables it to be delivered as molecules to regions deep within the body, overcoming the limitations of natural sunlight and physically generated light sources like lasers and LEDs. Simultaneously, its light properties make it valuable for applications such as imaging, photodynamic therapy, photo-oxidative therapy, and photobiomodulation. In this review article, we provide an updated overview of the diverse applications of molecular light and discuss the strengths and weaknesses of molecular light across various domains. Lastly, we present forward-looking perspectives on the potential of molecular light in the realms of molecular imaging, photobiological mechanisms, therapeutic applications, and photobiomodulation. While some of these perspectives may be considered bold and contentious, our intent is to inspire further innovations in the field of molecular light applications.
Collapse
Affiliation(s)
- Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| |
Collapse
|
11
|
Sakama A, Orioka M, Hiruta Y. Current advances in the development of bioluminescent probes toward spatiotemporal trans-scale imaging. Biophys Physicobiol 2024; 21:e211004. [PMID: 39175853 PMCID: PMC11338684 DOI: 10.2142/biophysico.bppb-v21.s004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/31/2024] [Indexed: 08/24/2024] Open
Abstract
Bioluminescence imaging has recently attracted great attention as a highly sensitive and non-invasive analytical method. However, weak signal and low chemical stability of the luciferin are conventional drawbacks of bioluminescence imaging. In this review article, we describe the recent progress on the development and applications of bioluminescent probes for overcoming the aforementioned limitations, thereby enabling spatiotemporal trans-scale imaging. The detailed molecular design for manipulation of their luminescent properties and functions enabled a variety of applications, including in vivo deep tissue imaging, long-term imaging, and chemical sensor.
Collapse
Affiliation(s)
- Akihiro Sakama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mariko Orioka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
12
|
Navarro MX, Brennan CK, Love AC, Prescher JA. Caged luciferins enable rapid multicomponent bioluminescence imaging. Photochem Photobiol 2024; 100:67-74. [PMID: 37259257 PMCID: PMC10687313 DOI: 10.1111/php.13814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Bioluminescence is a sensitive technique for imaging biological features over time. Historically, though, the modality has been challenging to employ for multiplexed tracking due to a lack of resolvable luciferase-luciferin pairs. Recent years have seen the development of numerous orthogonal probes for multi-parameter imaging. While successful, generating such tools often requires complex syntheses and lengthy enzyme evolution campaigns. This work showcases an alternative strategy for multiplexed bioluminescence that takes advantage of already-orthogonal caged luciferins and established uncaging enzymes. These probes generate unique bioluminescent signals that can be distinguished via a linear unmixing algorithm. Caged luciferins enabled two- and three-component imaging on the minutes time scale. We further showed that the tools can be used in conjunction with endogenous enzymes for multiplexed studies. Collectively, this approach lowers the barrier to multicomponent bioluminescence imaging and can be readily adopted by the broader community.
Collapse
Affiliation(s)
- Mariana X. Navarro
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
| | - Caroline K. Brennan
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
| | - Anna C. Love
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92716 (USA)
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA 92617 (USA)
| |
Collapse
|
13
|
Aggarwal T, Wang L, Gutierrez B, Guven H, Erguven H, Izgu EC. A Small-Molecule Approach to Bypass In Vitro Selection of New Aptamers: Designer Pre-Ligands Turn Baby Spinach into Sensors for Reactive Inorganic Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551132. [PMID: 38168427 PMCID: PMC10760011 DOI: 10.1101/2023.07.29.551132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Fluorescent light-up aptamer (FLAP) systems are promising biosensing platforms that can be genetically encoded. Here, we describe how a single FLAP that works with specific organic ligands can detect multiple, structurally unique, non-fluorogenic, and reactive inorganic targets. We developed 4-O-functionalized benzylidene imidazolinones as pre-ligands with suppressed fluorescent binding interactions with the RNA aptamer Baby Spinach. Inorganic targets, hydrogen sulfide (H2S) or hydrogen peroxide (H2O2), can specifically convert these pre-ligands into the native benzylidene imidazolinones, and thus be detected with Baby Spinach. Adaptation of this approach to live cells opened a new opportunity for top-down construction of whole-cell sensors: Escherichia coli transformed with a Baby Spinach-encoding plasmid and incubated with pre-ligands generated fluorescence in response to exogenous H2S or H2O2. Our approach eliminates the requirement of in vitro selection of a new aptamer sequence for molecular target detection, allows for the detection of short-lived targets, thereby advancing FLAP systems beyond their current capabilities. Leveraging the functional group reactivity of small molecules can lead to cell-based sensors for inorganic molecular targets, exploiting a new synergism between synthetic organic chemistry and synthetic biology.
Collapse
Affiliation(s)
- Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Liming Wang
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Bryan Gutierrez
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Hakan Guven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
14
|
Wang S, Zhao X, Liu M, Yang L, Yu M, Li Z. A dual-responsive crimson fluorescent probe for real-time diagnosis of alcoholic acute liver injury. Biosens Bioelectron 2023; 239:115596. [PMID: 37633002 DOI: 10.1016/j.bios.2023.115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
The polarity and viscosity of the microenvironment are associated with the control of the onset and progression of pathological diseases, including inflammation, immuno-suppression and cancer. If appropriate treatment is neglected, alcoholic acute liver injury (AALI), the initial sign of alcoholic liver diseases, may transform into hepatic lesions. Therefore, it's crucial to create a particular probe to detect AALI swiftly and track its progression. Herein a polarity and viscosity dual-responsive crimson fluorescent probe (PPBI) was designed and developed, which can target mitochondria and lipid droplets. PPBI possesses aggregation-induced emission properties, good photostability and strong anti-interference ability against pH, metal ions, anions and biomolecules. This probe can distinguish cancer cells from normal ones using changes of green and red fluorescence, as well as identify changes in the cellular microenvironment associated with inflammatory and ferroptosis processes. In addition, changes in polarity and viscosity can be amplified by in vivo imaging in a mouse model to monitor alcohol-induced acute liver injury and to effectively detect the course of pharmacological intervention therapy. All the results suggest that PPBI could be a promising real-time fluorescence imaging tool for diagnosis and treatment of acute alcoholic liver injury.
Collapse
Affiliation(s)
- Shuo Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaojun Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Miaomiao Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China.
| | - Mingming Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhanxian Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Yan J, Wang K, Gui L, Liu X, Ji Y, Lin J, Luo M, Xu H, Lv J, Tan F, Lin L, Yuan Z. Diagnosing Orthotopic Lung Tumor Using a NTR-Activatable Near-Infrared Fluorescent Probe by Tracheal Inhalation. Anal Chem 2023; 95:14402-14412. [PMID: 37698361 DOI: 10.1021/acs.analchem.3c02760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Nitroreductase (NTR) is an enzyme that is upregulated under tumor-depleted oxygen conditions. The majority of studies have been conducted on NTR, but many existing fluorescent imaging tools for monitoring NTR inevitably suffer from weak targeting, low sensitivity, and simple tumor models. Research on diagnosing lung tumors has been very popular in recent years, but targeting assays in orthotopic lung tumors is still of great research value, as such models better mimic the reality of cancer in the organism. Here, we developed a novel near-infrared (NIR) fluorescent probe IR-ABS that jointly targets NTR and carbonic anhydrase IX (CAIX). IR-ABS has excellent sensitivity and selectivity and shows exceptional NTR response in spectroscopic tests. The measurements ensured that this probe has good biosafety in both cells and mice. A better NTR response was found in hypoxic tumor cells at the cellular level, distinguishing tumor cells from normal cells. In vivo experiments demonstrated that IR-ABS achieves a hypoxic response at the zebrafish level and enables rapid and accurate tumor margin distinguishment in different mouse tumor models. More importantly, we successfully applied IR-ABS for NTR detection in orthotopic lung tumor models, further combined with tracheal inhalation drug delivery to improve targeting. To the best of our knowledge, we present for the first time a near-infrared imaging method for targeting lung cancerous tumor in situ via tracheal inhalation drug delivery, in contrast to the reported literature. This NIR fluorescence diagnostic strategy for targeting orthotopic lung cancer holds exciting potential for clinical aid in cancer diagnosis.
Collapse
Affiliation(s)
- Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Kaizhen Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Xian Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Yingying Ji
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Man Luo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Hong Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingxuan Lv
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Fang Tan
- Third Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, 650000 Kunming, Yunnan Province, China
| | - Liangting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| |
Collapse
|
16
|
Yadav AK, Chan J. Activity-based bioluminescence probes for in vivo sensing applications. Curr Opin Chem Biol 2023; 74:102310. [PMID: 37119771 PMCID: PMC10225331 DOI: 10.1016/j.cbpa.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023]
Abstract
Bioluminescence imaging is a highly sensitive technique commonly used for various in vivo applications. Recent efforts to expand the utility of this modality have led to the development of a suite of activity-based sensing (ABS) probes for bioluminescence imaging by 'caging' of luciferin and its structural analogs. The ability to selectively detect a given biomarker has presented researchers with many exciting opportunities to study both health and disease states in animal models. Here, we highlight recent (2021-2023) bioluminescence-based ABS probes with an emphasis on probe design and in vivo validation experiments.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
| |
Collapse
|