1
|
Erchinger JE, Okumura T, Nakata K, Shimizu D, Daniliuc CG, Amaike K, Glorius F, Itami K, Ito H. Functionalization and solubilization of polycyclic aromatic compounds by sulfoniumization. Chem Sci 2025; 16:8262-8267. [PMID: 40271021 PMCID: PMC12012737 DOI: 10.1039/d5sc01415h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Despite their unique physical properties and diverse applications in materials science, poor solubility of polycyclic aromatic hydrocarbons (PAHs) limits further fine-tuning and investigation of these systems. Herein, we report a sulfoniumization strategy to solubilize and functionalize a diverse range of PAHs in a one-step protocol using a triethylene glycol ether-substituted diaryl sulfoxide. While mono-sulfoniumization is generally observed, modification of the reaction conditions to favor bis-sulfoniumization is shown. The downstream applicability of the resulting PAH sulfonium salts is validated through a series of post-functionalization reactions that include C-C and C-heteroatom bond formation, while their application in annulative π-extension (APEX) is showcased by the synthesis of tetra-tert-butylquaterrylene from perylene. The red-shifted absorption and fluorescence, along with high water solubility of the PAH sulfonium salts, enable their application in bio-imaging, where they demonstrate selective mitochondrial staining without cytotoxicity.
Collapse
Affiliation(s)
- Johannes E Erchinger
- Organisch-Chemisches Institut, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Tsubasa Okumura
- Department of Chemistry, Graduate School of Science, Nagoya University Nagoya 464-8602 Japan
| | - Kanami Nakata
- Department of Chemistry, Graduate School of Science, Nagoya University Nagoya 464-8602 Japan
| | - Daisuke Shimizu
- Department of Chemistry, Graduate School of Science, Nagoya University Nagoya 464-8602 Japan
| | - Constanstin G Daniliuc
- Organisch-Chemisches Institut, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Kazuma Amaike
- Molecule Creation Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Kenichiro Itami
- Molecule Creation Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Nagoya 464-8602 Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University Nagoya 464-8602 Japan
| |
Collapse
|
2
|
Friedrich H, Siddiq K, Arafah N, Kulanda R, Aguilar-Sanchez LG, Jones CR. Arynes in green solvent: employing o-silylaryl triflates with propylene carbonate. Org Biomol Chem 2025; 23:4648-4653. [PMID: 40245022 DOI: 10.1039/d5ob00273g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Arynes generated from o-silylaryl triflate precursors are shown to engage with a range of arynophiles in propylene carbonate solvent. Possessing similar physicochemical properties to acetonitrile, propylene carbonate is found to be an effective direct solvent replacement, affording similar yields and promoting increased reaction rates. This is the first time that arynes have been used in conjunction with green and sustainable cyclic carbonate solvents.
Collapse
Affiliation(s)
- Heike Friedrich
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Khushal Siddiq
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Najwa Arafah
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Roland Kulanda
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Laura G Aguilar-Sanchez
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Christopher R Jones
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
3
|
Roberts RA, Metze BE, Javaly N, McCormick TM, Stuart DR. Access to arynes from arenes via net dehydrogenation: scope, synthetic applications and mechanistic analysis. Chem Sci 2025; 16:5547-5558. [PMID: 40018665 PMCID: PMC11863404 DOI: 10.1039/d5sc00054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
Arynes undergo a wide range of chemical transformations making them versatile reactive intermediates for organic synthesis. Access to arynes has long been dominated by pre-functionalised reagents, e.g., the venerable o-trimethylsilylaryl triflates. However, a move toward developing methods to access arynes that are both mild and efficient has prompted research into aryl "onium" aryne precursors. Here, we leverage aryl "onium" species as in situ or isolated intermediates in a net dehydrogenation of simple arenes as a novel and efficient way to access arynes. We describe a unified strategy in which two different tactics are employed to access diversely substituted arynes from simple arenes. (1) We developed a one-pot method that converts simple arenes into aryl thianthrenium salts and uses them in situ to generate arynes. (2) We developed a two-step process to convert arenes into aryl(Mes)iodonium salts and ultimately trapped arynes to expand the scope of compatible arenes. The net transformations from arenes to trapped arynes are complete with 2-4 hours. Mechanistic analysis through competition experiments, deuterium kinetic isotope effects (DKIE) and Density Functional Theory (DFT) provide key comparisons of the two approaches described in this work and yield a user's guide for selecting the appropriate "onium" leaving group based on the arene.
Collapse
Affiliation(s)
- Riley A Roberts
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Bryan E Metze
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Nicole Javaly
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | | | - David R Stuart
- Department of Chemistry, Portland State University Portland OR 97201 USA
| |
Collapse
|
4
|
Wang QD, Chen X, Wu YS, Miao C, Yang JM, Shen ZL. Palladium-Catalyzed α-Arylation of Sulfoxonium Ylides with Aryl Thianthrenium Salts via C-S and C-H Bond Activation. Chem Asian J 2025:e202401873. [PMID: 40016172 DOI: 10.1002/asia.202401873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Diverse α-aryl α-carbonyl sulfoxonium ylides were efficiently synthesized in yields ranging from moderate to high via a palladium-catalyzed α-arylation of sulfoxonium ylides with aryl thianthrenium salts. The reactions proceeded smoothly via C-S and C-H bond functionalization, exhibiting broad substrate scope and good compatibility to various functionalities. In addition, the scale-up synthesis could be achieved, and the one-pot protocol commencing from the use of simple arene as the precursor of aryl thianthrenium salt could also be accomplished.
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Xue Chen
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuan-Shuai Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Zhi-Liang Shen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
5
|
Ahmadli D, Müller S, Xie Y, Smejkal T, Jaeckh S, Iosub AV, Williams SR, Ritter T. Standardized Approach for Diversification of Complex Small Molecules via Aryl Thianthrenium Salts. J Am Chem Soc 2025; 147:4268-4283. [PMID: 39838621 PMCID: PMC11803749 DOI: 10.1021/jacs.4c14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Thianthrenation is a useful strategy for the late-stage diversification of complex small molecules owing to the positional selectivity and the synthetic versatility of thianthrenium salts as electrophilic linchpins. However, substrate-dependent identification of suitable reaction conditions for thianthrenation can be difficult. Reported reaction conditions for the functionalization of thianthrenium salts vary significantly and, in some instances, lack robustness and practicality. Herein, we report a generalized approach for the preparation of thianthrenium salts and two reaction manifolds for practical, robust, and parallel diversification of thianthrenium salts.
Collapse
Affiliation(s)
- Dilgam Ahmadli
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 152074, Germany
| | - Sven Müller
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 152074, Germany
| | - Yuanhao Xie
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 152074, Germany
| | - Tomas Smejkal
- Research
Chemistry, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein, AG 4332, Switzerland
| | - Simon Jaeckh
- Research
Chemistry, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein, AG 4332, Switzerland
| | - Andrei V. Iosub
- Research
Chemistry, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein, AG 4332, Switzerland
| | - Simon R. Williams
- Research
Chemistry, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein, AG 4332, Switzerland
| | - Tobias Ritter
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
6
|
Chen WL, Fang S, Song JL, Hu Q, Zhang SS, Shu B. Base-Promoted Sulfur Arylation of Sulfenamides to Oxonium Aryne Precursors: Chemoselective Synthesis of Sulfilimines and o-Sulfanylanilines. J Org Chem 2025; 90:448-457. [PMID: 39680633 DOI: 10.1021/acs.joc.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In this study, a metal-free and efficient method for the synthesis of sulfilimines and o-sulfanylanilines in high yields with excellent chemoselectivities from oxonium aryne precursors with sulfenamides has been developed. This method features mild reaction conditions, simple operations, a general substrate scope, and good tolerance of functional groups. In addition, scale-up synthesis, related applications, and preliminary mechanistic explorations were also investigated.
Collapse
Affiliation(s)
- Wang-Liang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Sheng Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Jia-Lin Song
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qiong Hu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
7
|
Dong B, Qi W, Chen Y, Zhang Y, Gu S, Zhao J, Zhou Q, Shen J, Xie L. Stabilized Carbon Radical-Mediated Assembly of Arylthianthrenium Salts, Alkenes and Amino Acid/Peptide Derivatives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411579. [PMID: 39573977 PMCID: PMC11727398 DOI: 10.1002/advs.202411579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Indexed: 01/14/2025]
Abstract
Efficiently assembling amino acids and peptides with bioactive molecules facilitates the modular and streamlined synthesis of a diverse library of peptide-related compounds. Particularly notable is their application in pharmaceutical development, leveraging site-selective late-stage functionalization. Here, a visible light-induced three-component reaction involving arylthianthrenium salts, amino acid/peptide derivatives, and alkenes are introduced. This approach utilizes captodatively-stabilized carbon radicals to enable radical-radical C─C coupling, effectively constructing complex bioactive molecules. This method offers a promising alternative route for modular synthesis of peptide-derived bio-relevant compounds.
Collapse
Affiliation(s)
- Bo Dong
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Weiguan Qi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Yifeng Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Yufei Zhang
- State Key Laboratory of Natural MedicinesDepartment of Organic ChemistryChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shiyu Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Jianlin Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural MedicinesDepartment of Organic ChemistryChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
- Jiangsu Engineering Research Center of Interfacial ChemistryNanjing UniversityNanjing210023P. R. China
| | - Lan‐Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| |
Collapse
|
8
|
Kim N, Choi M, Suh SE, Chenoweth DM. Aryne Chemistry: Generation Methods and Reactions Incorporating Multiple Arynes. Chem Rev 2024; 124:11435-11522. [PMID: 39383091 DOI: 10.1021/acs.chemrev.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Arynes hold significance for the efficient fusion of (hetero) arenes with diverse substrates, advancing the construction of complex molecular frameworks. Employing multiple equivalents of arynes is particularly effective in the rapid formation of polycyclic cores found in optoelectronic materials and bioactive compounds. However, the inherent reactivity of arynes often leads to side reactions, yielding unanticipated products and underlining the importance of a detailed investigation into the use of multiple arynes to fine-tune their reactivity. This review centers on methodologies and syntheses in organic reactions involving multiple arynes, categorizing based on mechanisms like cycloadditions, σ-bond insertions, nucleophilic additions, and ene reactions, and discusses aryne polymerization. The categorization based on these mechanisms includes two primary approaches: the first entails multiple aryne engagement within a single step while the second approach involves using a single equivalent of aryne sequentially across multiple steps, with both requiring strict reactivity control to ensure precise aryne participation in each respective step. Additionally, the review provides an in-depth analysis of the selection of aryne precursors, organized chronologically and by activation strategy, offering a comprehensive background that supports the main theme of multiple aryne utilization. The expectation remains that this comprehensive review will be invaluable in designing advanced syntheses engaging multiple arynes.
Collapse
Affiliation(s)
- Nayoung Kim
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Myungsoo Choi
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Xiao WJ, Li CX, Lv JY, Xu S, Shi WX, Su XC, Xue JY, Huang BQ, Zou Y, Yan M, Zhang XJ. Molecular Editing of Pyrroles to Benzenes/Naphthalenes by N 2O Deletion. Angew Chem Int Ed Engl 2024; 63:e202411166. [PMID: 39008335 DOI: 10.1002/anie.202411166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
A molecular editing reaction for converting pyrrole rings into benzene rings through a sequential pathway of Diels-Alder and cheletropic reactions was developed. The nitrogen atom in a N-bridged intermediate is eliminated in the form of N2O by a strain-releasing pathway, ultimately leading to the formation of substituted benzene and naphthalene derivatives.
Collapse
Affiliation(s)
- Wen-Jie Xiao
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng-Xin Li
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing-Yi Lv
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shan Xu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Xia Shi
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao-Can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Ying Xue
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bao-Qin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Zou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Ur Rehman Shah H, Li Q, Jones CR. syn-1,2-Diaminobenzocyclobutenes from [2+2] cycloaddition of 2-imidazolones with arynes. Chem Commun (Camb) 2024; 60:11928-11931. [PMID: 39344579 DOI: 10.1039/d4cc04023f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Formal [2+2] cycloaddition of arynes with 2-imidazolones affords syn-1,2-diaminobenzocyclobutenes. The transformation can also be conducted as a one-pot, three-stage process direct from simple propargyl amines and isocyanates to afford the new stereochemically defined benzocyclobutene frameworks.
Collapse
Affiliation(s)
- Haseeb Ur Rehman Shah
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Qi Li
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Christopher R Jones
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
11
|
Hann JL, Lyall CL, Kociok-Köhn G, Faverio C, Pantoş GD, Lewis SE. Unusual Regio- and Chemoselectivity in Oxidation of Pyrroles and Indoles Enabled by a Thianthrenium Salt Intermediate. Angew Chem Int Ed Engl 2024; 63:e202405057. [PMID: 38830180 DOI: 10.1002/anie.202405057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.
Collapse
Affiliation(s)
- Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Catherine L Lyall
- Research Facilities, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Chiara Faverio
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - G Dan Pantoş
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
12
|
Dupommier D, Vuagnat M, Rzayev J, Roy S, Jubault P, Besset T. Site-Selective Ortho/Ipso C-H Difunctionalizations of Arenes using Thianthrene as a Leaving Group. Angew Chem Int Ed Engl 2024; 63:e202403950. [PMID: 38712851 DOI: 10.1002/anie.202403950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Site-selective ortho/ipso C-H difunctionalizations of aromatic compounds were designed to afford polyfunctionalized arenes including challenging 1,2,3,4-tetrasubstituted ones (62 examples, up to 97 % yields). To ensure the excellent regioselectivity of the process while keeping high efficiency, an original strategy based on a "C-H thianthenation/Catellani-type reaction" sequence was developed starting from simple arenes. Non-prefunctionalized arenes were first regioselectively converted into the corresponding thianthrenium salts. Then, a palladium-catalyzed, norbornene (NBE)-mediated process allowed the synthesis of ipso-olefinated/ortho-alkylated polyfunctionalized arenes using a thianthrene as a leaving group (revisited Catellani reaction). Pleasingly, using a commercially available norbornene (NBE) and a unique catalytic system, synthetic challenges known for the Catellani reaction with aryl iodides were smoothly and successfully tackled with the "thianthrenium" approach. The protocol was robust (gram-scale reaction) and was widely applied to the two-fold functionalization of various arenes including bio-active compounds. Moreover, a panel of olefins and alkyl halides as coupling partners was suitable. Pleasingly, the "thianthrenium" strategy was successfully further applied to the incorporation of other groups at the ipso (CN/alkyl/H, aryl) and ortho (alkyl, aryl, amine, thiol) positions, showcasing the generality of the process.
Collapse
Affiliation(s)
- Dorian Dupommier
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Martin Vuagnat
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Javid Rzayev
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Sourav Roy
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Philippe Jubault
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| |
Collapse
|
13
|
Kunz S, Barnå F, Urrutia MP, Ingner FJL, Martínez-Topete A, Orthaber A, Gates PJ, Pilarski LT, Dyrager C. Derivatization of 2,1,3-Benzothiadiazole via Regioselective C-H Functionalization and Aryne Reactivity. J Org Chem 2024; 89:6138-6148. [PMID: 38648018 PMCID: PMC11077497 DOI: 10.1021/acs.joc.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
Despite growing interest in 2,1,3-benzothiadiazole (BTD) as an integral component of many functional molecules, methods for the functionalization of its benzenoid ring have remained limited, and many even simply decorated BTDs have required de novo synthesis. We show that regioselective Ir-catalyzed C-H borylation allows access to versatile 5-boryl or 4,6-diboryl BTD building blocks, which undergo functionalization at the C4, C5, C6, and C7 positions. The optimization and regioselectivity of C-H borylation are discussed. A broad reaction scope is presented, encompassing ipso substitution at the C-B bond, the first examples of ortho-directed C-H functionalization of BTD, ring closing reactions to generate fused ring systems, as well as the generation and capture reactions of novel BTD-based heteroarynes. The regioselectivity of the latter is discussed with reference to the Aryne Distortion Model.
Collapse
Affiliation(s)
- Susanna Kunz
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Fredrik Barnå
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | | | | | | | - Andreas Orthaber
- Department
of Chemistry—Ångström, Uppsala University, Box 523, Uppsala 75120, Sweden
| | - Paul J. Gates
- School
of Chemistry, University of Bristol, Cantock’s Close, Clifton, Bristol BS8 1TS, U.K.
| | - Lukasz T. Pilarski
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Christine Dyrager
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| |
Collapse
|
14
|
Cheng Q, Bhattacharya D, Haring M, Cao H, Mück-Lichtenfeld C, Studer A. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat Chem 2024; 16:741-748. [PMID: 38238464 PMCID: PMC11087273 DOI: 10.1038/s41557-023-01428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 05/12/2024]
Abstract
Skeletal editing is a straightforward synthetic strategy for precise substitution or rearrangement of atoms in core ring structures of complex molecules; it enables quick diversification of compounds that is not possible by applying peripheral editing strategies. Previously reported skeletal editing of common arenes mainly relies on carbene- or nitrene-type insertion reactions or rearrangements. Although powerful, efficient and applicable to late-stage heteroarene core structure modification, these strategies cannot be used for skeletal editing of pyridines. Here we report the direct skeletal editing of pyridines through atom-pair swap from CN to CC to generate benzenes and naphthalenes in a modular fashion. Specifically, we use sequential dearomatization, cycloaddition and rearomatizing retrocycloaddition reactions in a one-pot sequence to transform the parent pyridines into benzenes and naphthalenes bearing diversified substituents at specific sites, as defined by the cycloaddition reaction components. Applications to late-stage skeletal diversification of pyridine cores in several drugs are demonstrated.
Collapse
Affiliation(s)
- Qiang Cheng
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | | | - Malte Haring
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Hui Cao
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
15
|
Mindner J, Rombach S, Werz DB. Copper-Assisted (Pseudo-)Halochalcogenation of Arynes. Org Lett 2024; 26:2124-2128. [PMID: 38427809 DOI: 10.1021/acs.orglett.4c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
In this report, we describe the multicomponent coupling reaction between arynes, (pseudo)halides, and an electrophilic chalcogen species. Addition of a copper salt enabled smooth conversion by suppressing side reactions. A variety of different aryne precursors as well as seleno- and thiosulfonates were employed, yielding a broad spectrum of ortho-(pseudo)halogenated chalcogenides. This motif was subjected to different cross-coupling approaches, demonstrating the applicability of these compounds as building blocks for more complex structures.
Collapse
Affiliation(s)
- Jasper Mindner
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Sina Rombach
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Daniel B Werz
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
16
|
Qi W, Gu S, Xie LG. Reductive Radical-Polar Crossover Enabled Carboxylative Alkylation of Aryl Thianthrenium Salts with CO 2 and Styrenes. Org Lett 2024; 26:728-733. [PMID: 38214477 DOI: 10.1021/acs.orglett.3c04183] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Carboxylic functionalities are among the pivotal groups in bioactive molecules and in the synthesis of new lead compounds because of their unique character in the formation of hydrogen bonds and the possibility of constructing molecular complexes via amide couplings. We adopt the reductive radical-polar crossover strategy to introduce carboxyalkyl groups into arenes with styrenes and CO2 via thianthrenium salts. This protocol exhibits excellent potential as a straightforward and modular platform for site-selective carboxylative derivation of bioactive molecules.
Collapse
Affiliation(s)
- Weiguan Qi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shiyu Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
17
|
Metze BE, Roberts RA, Nilova A, Stuart DR. An efficient and chemoselective method to generate arynes. Chem Sci 2023; 14:13885-13892. [PMID: 38075642 PMCID: PMC10699571 DOI: 10.1039/d3sc05429b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 04/06/2025] Open
Abstract
Arynes hold immense potential as reactive intermediates in organic synthesis as they engage in a diverse range of mechanistically distinct chemical reactions. However, the poor functional group compatibility of generating arynes or their precursors has stymied their widespread use. Here, we show that generating arynes by deprotonation of an arene and elimination of an "onium" leaving group is mild, efficient and broad in scope. This is achieved by using aryl(TMP)iodonium salts (TMP = 2,4,6-trimethoxyphenyl) as the aryne precursor and potassium phosphate as the base, and a range of arynophiles are compatible. Additionally, we have performed the first quantitative analysis of functional group compatibility for several methods to generate arynes, including the method developed here and the current state of the art. Finally, we show that a range of "sensitive" functional groups such as Lewis and Brønsted acids and electrophiles are compatible under our conditions.
Collapse
Affiliation(s)
- Bryan E Metze
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Riley A Roberts
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Aleksandra Nilova
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - David R Stuart
- Department of Chemistry, Portland State University Portland OR 97201 USA
| |
Collapse
|
18
|
Sephton T, Charitou A, Trujillo C, Large JM, Butterworth S, Greaney MF. Aryne-Enabled C-N Arylation of Anilines. Angew Chem Int Ed Engl 2023; 62:e202310583. [PMID: 37850515 PMCID: PMC10952162 DOI: 10.1002/anie.202310583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Anilines are potentially high-value arylating agents, but are limited by the low reactivity of the strong C-N bond. We show that the reactive intermediate benzyne can be used to both activate anilines, and set-up an aryl transfer reaction in a single step. The reaction does not require any transition metal catalysts or stoichiometric organometallics, and establishes a metal-free route to valuable biaryl products by functionalizing the aniline C-N bond.
Collapse
Affiliation(s)
- Thomas Sephton
- School of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | | | | | - Jonathan M. Large
- LifeArc, Accelerator BuildingOpen Innovation CampusStevenageSG1 2FXUK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterM13 9PLUK
| | | |
Collapse
|
19
|
Karandikar SS, Metze BE, Roberts RA, Stuart DR. Oxidative Cycloaddition Reactions of Arylboron Reagents via a One-pot Formal Dehydroboration Sequence. Org Lett 2023; 25:6374-6379. [PMID: 37610877 DOI: 10.1021/acs.orglett.3c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Arylboron compounds are widely available and synthetically useful reagents in which the boron group is typically substituted. Herein, we show that the boron group and ortho-hydrogen atom are substituted in a formal cycloaddition reaction. This transformation is enabled by a one-pot sequence involving diaryliodonium and aryne intermediates. The scope of arylboron reagents and arynophiles is demonstrated, and the method is applied to the formal synthesis of an investigational drug candidate.
Collapse
Affiliation(s)
- Shubhendu S Karandikar
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Bryan E Metze
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Riley A Roberts
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
20
|
Xu H, Li X, Dong Y, Ji S, Zuo J, Lv J, Yang D. Thianthrenium-Enabled Phosphorylation of Aryl C-H Bonds via Electron Donor-Acceptor Complex Photoactivation. Org Lett 2023; 25:3784-3789. [PMID: 37191307 DOI: 10.1021/acs.orglett.3c01303] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An efficient strategy for the preparation of aryl phosphonates via blue-light-promoted single electron transfer process of an EDA complex between phosphites and thianthrenium salts has been demonstrated. The corresponding substituted aryl phosphonates were obtained in good to excellent yields, and the byproduct thianthrene can be recovered and reused in quantity. This developed method realizes the construction of aryl phosphonates through the indirect C-H functionalization of arenes, which has potential application value in drug discovery and development.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xufeng Li
- Zhejiang Wansheng Co., Ltd., Linhai, Zhejiang 317000, China
| | - Yuzheng Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuangran Ji
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Junze Zuo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|