1
|
Shellnutt ZS, Koide K. Atmosphere Effects on Arene Reduction with Lithium and Ethylenediamine in THF. J Org Chem 2025; 90:3684-3697. [PMID: 40028993 PMCID: PMC11915386 DOI: 10.1021/acs.joc.4c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Birch reductions employing lithium metal have been performed mostly under argon due to concerns about forming metal nitrides from the reduction of dinitrogen if performed under nitrogen. Although it is generally understood that inert atmospheres are standard for Birch and Birch-type (lithium, ethylenediamine, t-BuOH, THF) reductions, the atmosphere effect on Birch reduction has not been studied. Herein, we report the reduction of model substrates using lithium metal and ethylenediamine in THF under various atmospheric conditions. The reductions under argon and nitrogen atmospheres afforded essentially the same yields. Surprisingly, oxygen not only perturbed the yields in some cases but also controlled regioselectivity for a subset of naphthalenes. We propose a mechanism underlying the unexpected oxygen-dependent regioselectivity for the Birch-type reduction of naphthalenes. This work shows that the Birch-type reduction may be performed under a nitrogen atmosphere and may account for a fraction of oxygen-sensitive Birch-type reductions.
Collapse
Affiliation(s)
- Zachary S Shellnutt
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Yang X, Song W, Liao K, Wang X, Wang X, Zhang J, Wang H, Chen Y, Yan N, Han X, Ding J, Hu W. Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction. Nat Commun 2024; 15:8216. [PMID: 39294161 PMCID: PMC11411064 DOI: 10.1038/s41467-024-52520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Atomically dispersed single atom (SA) and atomic cluster (AC) metallic materials attract tremendous attentions in various fields. Expanding monometallic SA and AC to multimetallic SA/AC composites opens vast scientific and technological potentials yet exponentially increasing the synthesis difficulty. Here, we present a general energy-selective-clustering methodology to build the largest reported library of carbon supported bi-/multi-metallic SA/AC materials. The discrepancy in cohesive energy results into selective metal clustering thereby driving the symbiosis of multimetallic SA or/and AC. The library includes 23 bimetallic SA/AC composites, and expanded compositional space of 17 trimetallic, quinary-metallic, septenary-metallic SA/AC composites. We chose bimetallic M1SAM2AC to demonstrate the electrocatalysis utility. Unique decoupled active sites and inter-site synergy lead to 8/47 mV overpotential at 10 mA cm-2 for alkaline/acidic hydrogen evolution and over 1000 h durability in water electrolyzer. Moreover, delicate modulations towards composition and configuration yield high-performance catalysts for multiple electrocatalysis systems. Our work broadens the family of atomically dispersed materials from monometallic to multimetallic and provides a platform to explore the complex composition induced unconventional effects.
Collapse
Affiliation(s)
- Xinyi Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Wanqing Song
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Kang Liao
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xiaoyang Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xin Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Haozhi Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Ning Yan
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin University, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| | - Jia Ding
- School of Materials Science and Engineering, Tianjin University, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Ma XD, Ma FY, Jiao MM, Li JT, Duan XF. Modular and Regioselective Synthesis of Benzo-Fused Five-Membered Rings Enabled by Co/Ti Synergism. Org Lett 2024; 26:6658-6663. [PMID: 39083395 DOI: 10.1021/acs.orglett.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The regiocontrol in constructing benzo-fused five-membered rings by C-H cyclization remains an important challenge. We report a highly general and regioselective methodology to access such heterocycles and indenones, where under the catalysis of CoBr2/bipyridine, aryl titanates, alkynes and EX2 (E = NR, S(O), RP(O), R2Si, CO, etc.) were assembled to various heterocycles and indenones in a modular manner. Unprecedented 1,2-Co/Ti heterobimetallic arylene and benzotitanole intermediates have played crucial roles in these syntheses.
Collapse
Affiliation(s)
- Xiao-Di Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fang-Yuan Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Miao-Miao Jiao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jun-Ting Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Cattani S, Cera G. Modern Organometallic C-H Functionalizations with Earth-Abundant Iron Catalysts: An Update. Chem Asian J 2024; 19:e202300897. [PMID: 38051920 DOI: 10.1002/asia.202300897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Iron-catalyzed C-H activation has recently emerged as an increasingly powerful synthetic method for the step- and atom- economical direct C-H functionalizations of otherwise inert C-H bonds. Iron's low-cost and toxicity along with its catalytic versatility have encouraged the scientific community to elect this metal for the development of new C-H activation methodologies. Within this review, we aim to present a collection of the most recent examples of iron-catalyzed C-H functionalizations with a particular emphasis on modern synthetic strategies and mechanistic aspects.
Collapse
Affiliation(s)
- Silvia Cattani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
5
|
Ye J, Liu Y, Luo J, Wan JP. "Alkene-to-Alkene" Difunctionalization of Enaminones for the Synthesis of Polyfunctionalized Alkenes by Transition-Metal-Free C-H and C-N Bond Transformation. Org Lett 2023; 25:8451-8456. [PMID: 37971945 DOI: 10.1021/acs.orglett.3c03353] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The three-component reactions of enaminones, disulfides, and alcohols for the synthesis of polyfunctionalized alkenes have been realized via the C-H and C-N bond transformation on enaminones. The reactions proceed in a novel "alkene-to-alkene" difunctionalization mode without using any transition metal. The application of the alkene products in the synthesis of divergent sulfenyl heteroaryls, including sulfenylated pyrazoles, pyrimidines, and isoxazoles, via simple annulation has also been verified.
Collapse
Affiliation(s)
- Jingfeng Ye
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jin Luo
- Analytical and Testing Center, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
6
|
Xu LC, Ma XD, Liu KM, Duan XF. Chemo- and Regioselective Alkylation of Pyridine N-Oxides with Titanacyclopropanes. Org Lett 2023. [PMID: 38016093 DOI: 10.1021/acs.orglett.3c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
While titanacyclopropanes are used to react mainly with ester, amide, and cyano to undergo cyclopropanation, herein they react preferentially with pyridine N-oxide to accomplish C2-H alkylation beyond these functionalities with double regioselectivity. After being pyridylated at the less hindered C-Ti bond, the remaining C-Ti bond of titanacyclopropanes can be further functionalized by various electrophiles, allowing facile introduction of complex alkyls onto the C2 of pyridines. Its synthetic potential has been demonstrated by late-stage diversification of drugs.
Collapse
Affiliation(s)
- Li-Chen Xu
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiao-Di Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Kun-Ming Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
7
|
Wei YM, Ma XD, Wang MF, Duan XF. Fe-Catalyzed Difunctionalization of Aryl Titanates Enabled by Fe/Ti Synergism. Org Lett 2023; 25:2745-2749. [PMID: 37036175 DOI: 10.1021/acs.orglett.3c00975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Fe-catalyzed difunctionalization of aryl titanates via double C-H activation has been developed, where aryl titanates were arylated via ortho C-H activation, followed by ipso electrophilic trapping of the C-Ti bond. The ortho C-H arylation should be promoted by a 1,2-Fe/Ti synergistic heterobimetallic arylene intermediate and represents an ortho C-H ferration directed by a readily transformable C-Ti group. Common benzamides, esters, and nitriles function as arylating reagents, which involves another ortho C-H activation directed by these functionalities.
Collapse
Affiliation(s)
- Yi-Ming Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiao-Di Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Meng-Fei Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|